Skip to main content
Log in

Development of Ultrafine Grain Structure in an Al–Mg–Mn–Sc–Zr Alloy During High-Temperature Multidirectional Isothermal Forging

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Mechanisms of grain refinement under multidirectional isothermal forging (MIF) at 325 °C (~ 0.65 Tm) and the strain rate 10− 4 s− 1 of the Al–Mg-based alloy with complex additions of transition metals were investigated. The starting alloy had an equiaxed grain structure with grain size 25 µm and a uniform distribution of coherent Al3(Sc,Zr) dispersoids of 20–50 nm. A distinguished structural feature in the early MIF stage was the formation of high strain- and misorientation gradients, followed by deformation banding. Due to the sequential changes of the loading axis, such bands were developed in various directions and fragmented the original grains. The number of bands and misorientation of their boundaries gradually rose with strain, resulting in formation of (ultra)fine grain structure with the grain size 2 µm. New grain formation was concluded to occur via continuous dynamic recrystallization and controlled by the nanosized precipitates, which preferably remained stable and coherent with the surrounding matrix.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater Sci. 45, 103 (2000)

    Article  CAS  Google Scholar 

  2. R.Z. Valiev, T.G. Langdon, Prog. Mater Sci. 51, 881 (2006)

    Article  CAS  Google Scholar 

  3. M.V. Markushev, Lett. Mater. 1, 36 (2011)

    Article  Google Scholar 

  4. F.J. Humphreys, M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd edn. (Elsevier Ltd., New York, 2004), p. 605

    Google Scholar 

  5. K. Nakashima, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 46, 1589 (1998)

    Article  CAS  Google Scholar 

  6. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Metall. Mater. Trans. A 30, 1989 (1999)

    Article  Google Scholar 

  7. A. Yamashita, D. Yamaguchi, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 287, 100 (2000)

    Article  Google Scholar 

  8. C. Pithan, T. Hashimoto, M. Kawazoe, J. Nagahora, K. Higashi, Mater. Sci. Eng. A 280, 62 (2000)

    Article  Google Scholar 

  9. R.M. Imayev, G.A. Salishchev, O.N. Senkov, V.M. Imayev, N.K. Gabdullin, M.R. Shagiev, A.V. Kuznetsov, F.H. Froes, Mater. Sci. Eng. A 300, 263 (2001)

    Article  Google Scholar 

  10. A. Belyakov, T. Sakai, H. Miura, K. Tsuzaki, Phios. Mag. A 81, 2629 (2001)

    Article  CAS  Google Scholar 

  11. Y.C. Chen, Y.Y. Huang, C.P. Chang, P.W. Kao, Acta Mater. 51, 2005 (2003)

    Article  CAS  Google Scholar 

  12. O. Sitdikov, T. Sakai, A. Goloborodko, H. Miura, Scr. Mater. 51, 175 (2004)

    Article  CAS  Google Scholar 

  13. P.J. Apps, M. Berta, P.B. Prangnell, Acta Mater. 53, 499 (2005)

    Article  CAS  Google Scholar 

  14. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Trans. 50, 101 (2009)

    Article  CAS  Google Scholar 

  15. O. Sitdikov, T. Sakai, E. Avtokratova, R. Kaibyshev, Y. Kimura, K. Tsuzaki, Mater. Sci. Eng. A 444, 18 (2007)

    Article  CAS  Google Scholar 

  16. R.R. Mulyukov, R.M. Imayev, A.A. Nazarov, M.F. Imayev, V.M. Imayev, Superplasticity of Ultrafine Grained Alloys: Experiment, Theory, Technologies (Nauka, Moscow, 2014), p. 284 (in Russian)

    Google Scholar 

  17. O. Sitdikov, E. Avtokratova, T. Sakai, J. Alloys Compd. 648, 195 (2015)

    Article  CAS  Google Scholar 

  18. O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng. A 328, 147 (2002)

    Article  Google Scholar 

  19. Y.A. Filatov, V.I. Yelagin, V.V. Zacharov, Mater. Sci. Eng. A 280, 97 (2000)

    Article  Google Scholar 

  20. Y. Zeng, Y. Chao, Z. Luo, Y. Cai, R. Song, High Temp. Mater. Process. 37, 603 (2018)

    Article  CAS  Google Scholar 

  21. Channel 5, User Manual, O. Instruments HKL (2007). http://web.archive.org/web/20200807101801/https://aarc.ua.edu/wp-content/uploads/docs/JEOL-7000FOxford_Channel_5_User_Manual.pdf

  22. ISO Standard 13067, Microbeam Analysis—Electron Backscatter Diffraction—Measurement of Average Grain Size (2011)

  23. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley, M.J. Whelan, Electron Microscopy of Thin Crystals (Butter Worths, London, 1965), p. 549

    Google Scholar 

  24. O.N. Senkov, M.R. Shagiev, S.V. Senkova, D.B. Miracle, Acta Mater. 56, 3723 (2008)

    Article  CAS  Google Scholar 

  25. E. Avtokratova, O. Sitdikov, M. Markushev, R. Mulyukov, Mater. Sci. Eng. A 538, 386 (2012)

    Article  CAS  Google Scholar 

  26. H.J. McQueen, S. Spigarelli, M.E. Kassner, E. Evangelista, Hot Deformation and Processing of Aluminum Alloys (CRC Press, Taylor & Francis Group, Boca Raton, 2011), p. 564

    Google Scholar 

  27. J.P. Poirier, Creep of Crystals: High-Temperature Deformation Processes in Metals, Ceramics and Minerals (Cambridge University Press, Cambridge, 1985), p. 260

    Book  Google Scholar 

  28. M.E. McMahon, The Variation of Subgrain Misorientation in Aluminum with Large Steady-State Creep Strain. Thesis (M.S. in Mechanical Engineering), (Naval Postgraduate School, 1986), p. 72

  29. P.J. Hurley, F.J. Humphreys, Acta Mater. 51, 1087 (2003)

    Article  CAS  Google Scholar 

  30. C. Kobayashi, T. Sakai, A. Belyakov, H. Miura, Phil. Mag. Lett. 87, 751 (2007)

    Article  CAS  Google Scholar 

  31. T. Sakai, A. Belyakov, H. Miura, Metal. Mat. Trans. A 39, 2206 (2008)

    Article  CAS  Google Scholar 

  32. O. Sitdikov, T. Sakai, H. Miura, C. Hama, Mater. Sci. Eng. A 516, 180 (2009)

    Article  CAS  Google Scholar 

  33. T. Takeshita, U.F. Kocks, H.-R. Wenk, Acta Metall. 37, 2595 (1989)

    Article  CAS  Google Scholar 

  34. S. Aris, R.V. Martins, V. Honkimaki, A. Pyzalla, Comput. Mater. Sci. 19, 116 (2000)

    Article  CAS  Google Scholar 

  35. M. Hatherly, A.S. Malin, Scr. Met. 18, 449 (1984)

    Article  CAS  Google Scholar 

  36. D.A. Hughes, N. Hansen, Metall. Trans. A 24, 2021 (1993)

    Article  Google Scholar 

  37. U. Chakkingal, P.F. Thomson, J. Mater. Process. Technol. 117, 169 (2001)

    Article  CAS  Google Scholar 

  38. I. Mazurina, T. Sakai, H. Miura, O. Sitdikov, R. Kaibyshev, Mater. Sci. Eng. A 486, 662 (2008)

    Article  CAS  Google Scholar 

  39. J. Čadek, Creep in Metallic Materials (Elsevier, New York, 1988), p. 372

    Google Scholar 

  40. E. Avtokratova, O. Sitdikov, O. Mukhametdinova, M. Markushev, S.V.S.N. Murty, M.J.N.V. Prasad, B.P. Kashyap, J. Alloys Compd. 673, 182 (2016)

    Article  CAS  Google Scholar 

  41. O. Sitdikov, E. Avtokratova, O. Mukhametdinova, R. Garipova, M. Markushev, Phys. Met. Metallogr. 118, 1215 (2017)

    Article  CAS  Google Scholar 

  42. H.J. McQueen, Metal Forum (Australia) 4, 81 (1981)

    CAS  Google Scholar 

  43. O. Sitdikov, Inorg. Mater. Appl. Res. 7, 149 (2016)

    Google Scholar 

  44. A. Russell, K.L. Lee, Structure—Property Relations in Nonferrous Metals (Wiley, New York, 2005), p. 440

    Book  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Science Foundation under Grant No. 16-19-10152-P and the Ministry of Science and Higher Education of Russia in accordance to the state assignment of IMSP RAS under Grant АААА-А19-119021390107-8 (composition analyses of intermetallic phases). The authors are grateful to Dr. M. Shagiev for the useful discussions and Mr. B. Atanov for help in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sitdikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitdikov, O., Avtokratova, E. & Markushev, M. Development of Ultrafine Grain Structure in an Al–Mg–Mn–Sc–Zr Alloy During High-Temperature Multidirectional Isothermal Forging. Met. Mater. Int. 27, 2743–2755 (2021). https://doi.org/10.1007/s12540-020-00842-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00842-2

Keywords

Navigation