Skip to main content
Log in

Coupled Experimental Study and Thermodynamic Modeling of the Fe–Mn–Ti–O System

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Thermodynamic optimization of phase diagrams and thermodynamic properties of the FeO–Fe2O3–MnO–Mn2O3–TiO2–Ti2O3 system at 1 atm pressure was performed based on the literature data and new phase diagram data in this study. Isothermal phase diagrams of the system at 1250–1600 °C in air atmosphere were experimentally determined for the first time using the equilibration and quenching method. The liquid phase and complex solid solutions like pseudobrookite, ilmenite and spinel were described using the Modified Quasichemical Model and Compound Energy Formalism, respectively. A set of optimized model parameters of all phases was obtained which reproduces all reliable thermodynamic data and phase equilibria within 3 mol% in composition and ± 25 °C in temperature. The present thermodynamic results can help the prediction of complex thermodynamic data and phase equilibria of the Fe–Mn–Ti–O system at 1 atm total pressure from 25 °C to above the liquidus temperatures over the entire range of composition and \(p_{{O_{2} }}\) from metallic saturation to 1 atm.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Seo, K. Kim, H.J. Kim, H. Ryoo, G.M. Evans, C. Lee, Met. Mater. Int. 26, 1226 (2020)

    CAS  Google Scholar 

  2. B. Wang, J. Li, Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00617-9

    Article  Google Scholar 

  3. A. Feenstra, T. Peters, Contrib. Mineral. Petrol. 126, 109 (1996)

    CAS  Google Scholar 

  4. K.N. Raymond, H.R. Wenk, Contrib. Mineral. Petrol. 30, 135 (1971)

    CAS  Google Scholar 

  5. A.M. Hofmeister, Eur. J. Mineral. 5, 281 (1993)

    CAS  Google Scholar 

  6. N. Tomioka, K. Fujino, Science 277, 1084 (1997)

    CAS  Google Scholar 

  7. T. Yamanaka, Y. Komatsu, M. Sugahara, T. Nagai, Am. Miner. 90, 1301 (2005)

    CAS  Google Scholar 

  8. A.F. Buddington, D.H. Lindsley, J. Petrol. 5, 310 (1964)

    CAS  Google Scholar 

  9. K. Spencer, D.H. Lindsley, Am. Mineral. 66, 1189 (1981)

    CAS  Google Scholar 

  10. D.J. Andersen, D.H. Lindsley, Am. Mineral. 73, 714 (1988)

    CAS  Google Scholar 

  11. S.A. Degterov, E. Jak, P.C. Hayes, A.D. Pelton, Metall. Mater. Trans. B 31, 651 (2000)

    Google Scholar 

  12. Y.-B. Kang, I.-H. Jung, Metall. Mater. Trans. E. 3, 156 (2016)

    CAS  Google Scholar 

  13. S.K. Panda. Montréal. McGill University. (2019)

  14. S.K. Panda, P. Hudon, I.-H. Jung, Calphad 66, 101639 (2019)

    CAS  Google Scholar 

  15. Y.-B. Kang, I.-H. Jung, J. Phys. Chem. Solids 98, 237 (2016)

    CAS  Google Scholar 

  16. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, M.-A. Van Ende, Calphad 54, 35 (2016)

    CAS  Google Scholar 

  17. I.E. Grey, A.F. Reid, D.G. Jones, Trans. Inst. Min. Metall., Sect. C 83, 105 (1974)

    Google Scholar 

  18. I.E. Grey, Ph.D. thesis, University of Melbourne (1975)

  19. R.R. Merritt, J. Solid State Chem. 43, 267 (1982)

    CAS  Google Scholar 

  20. R.R. Merritt, J. Solid State Chem. 53, 254 (1985)

    Google Scholar 

  21. I.C. Smith, H.B. Bell, Trans. Inst. Min. Metall., Sect. C 80, 55 (1971)

    Google Scholar 

  22. Y. Morioka, K. Morita, F. Tsukihashi, N. Sano, Tetsu to Hagane 81, 40 (1995)

    CAS  Google Scholar 

  23. K. Morita, Y. Morioka, F. Tsukihashi, N. Sano, Ironmak. Conf. Proc. 55, 775 (1996)

    Google Scholar 

  24. M. Hillert, B. Jansson, B. Sundman, Application of the compound-energy model to oxide systems. Z. Metallkd. 79, 81 (1988)

    CAS  Google Scholar 

  25. A.D. Pelton, Calphad 25, 319 (2001)

    CAS  Google Scholar 

  26. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, Y. Dessureault, Metall. Mater. Trans. B 32, 643 (2000)

    Google Scholar 

  27. A.D. Pelton, P. Chartrand, Metal Mater. Trans. A. 32, 1355 (2001)

    Google Scholar 

  28. G. Eriksson, A.D. Pelton, Metall. Mater. Trans. B 24, 795 (1993)

    Google Scholar 

  29. P. Wu, G. Eriksson, A.D. Pelton, J. Am. Ceram. Soc. 76, 2065 (1993)

    CAS  Google Scholar 

  30. E. Ising, Z. Phys. 31, 253 (1925)

    CAS  Google Scholar 

  31. S.K. Panda, I.-H. Jung, ISIJ Int. 60, 31 (2019)

    Google Scholar 

  32. W.Q. Guo, S. Malus, D.H. Ryan, Z. Altounian, J. Phys. Condens. Matter. 11, 6337 (1999)

    CAS  Google Scholar 

  33. A.R. Lennie, K.S. Knight, C.M.B. Henderson, Am. Mineral. 92, 1165 (2007)

    CAS  Google Scholar 

  34. G. Seitz, N. Penin, L. Decoux, A. Wattiaux, M. Duttine, M. Gaudon, Inorg. Chem. 55, 2499 (2016)

    CAS  Google Scholar 

  35. R.H. Mitchell, R.P. Liferovich, Can. Metal. 42, 1871 (2004)

    CAS  Google Scholar 

  36. R.P. Liferovich, R.H. Mitchell, Can. Metal. 44, 1099 (2006)

    CAS  Google Scholar 

  37. R.P. Liferovich, R.H. Mitchell, Crystallogr. Rep. 51, 383 (2006)

    CAS  Google Scholar 

  38. R.J. Harrison, U. Becker, S.A.T. Redfern, Am. Mineral. 85, 1694 (2000)

    CAS  Google Scholar 

  39. R.J. Harrison, S.A.T. Redfern, R.I. Smith, Am. Mineral. 85, 194 (2000)

    CAS  Google Scholar 

  40. S.K. Panda, I.-H. Jung, J. Am. Ceram. Soc. 97, 3328 (2014)

    CAS  Google Scholar 

  41. A.N. Grundy, B. Hallstedt, L.J. Gauckler, J. Phase Equilib. 24, 21 (2003)

    CAS  Google Scholar 

  42. S.E. Dorris, T.O. Mason, J. Am. Ceram. Soc. 71, 379 (1988)

    CAS  Google Scholar 

  43. C.I. Pearce, C.M.B. Henderson, N.D. Telling, R.A.D. Pattrick, J.M. Charnock, V.S. Coker et al., Am. Mineral. 95, 425 (2010)

    CAS  Google Scholar 

  44. B.A. Wechsler, A. Navrotsky, J. Solid State Chem. 55, 165 (1984)

    CAS  Google Scholar 

  45. R.L. Millard, R.C. Peterson, B.K. Hunter, Am. Mineral. 80, 885 (1995)

    CAS  Google Scholar 

  46. E.F. Bertaut, H. Vincent, Solid State Commun. 6, 269 (1968)

    CAS  Google Scholar 

  47. V. Stevanovic, M. d’Avezac, A. Zunger, J. Am. Chem. Soc. 133, 11649 (2011)

    CAS  Google Scholar 

  48. I.-H. Jung, Ph.D. Thesis, École Polytechnique. Montréal (2003), p. 338

  49. Y.-B. Kang, I.-H. Jung, H.-G. Lee, Calphad 30, 235 (2006)

    CAS  Google Scholar 

  50. G. Eriksson, A.D. Pelton, E. Woermann, A. Ender, Ber. Bunsenges. Phys. Chem. 100, 1839 (1996)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from Tata Steel Europe, POSCO, Hyundai Steel, Nucor Steel, RioTinto Iron and Titanium, Nippon Steel and Sumitomo Metals Corp., JFE Steel, Voestalpine Stahl, RHI, Schott A.G., and the Natural Sciences and Engineering Research Council of Canada are gratefully acknowledged. One of the authors (S.K. Panda) would like to thank the McGill Engineering Doctorate Award (MEDA) from McGill University. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT)(No. 2020R1A5A6017701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Ho Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, S.K., Jung, IH. Coupled Experimental Study and Thermodynamic Modeling of the Fe–Mn–Ti–O System. Met. Mater. Int. 27, 725–743 (2021). https://doi.org/10.1007/s12540-020-00815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00815-5

Keywords

Navigation