Skip to main content
Log in

Microstructure Transformation in Different Regions of Zr61.4Cu27.8Al4Ni6Y0.8 Bulk Metallic Glass Induced by Rapid Laser Welding

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An experimental study is performed on the microstructure transformation induced by rapid laser welding in the different regions of Zr61.4Cu27.8Al4Ni6Y0.8 bulk metallic glass (BMG). The laser input energy has a remarkable influence on the microstructure and microhardness of the Zr-based BMGs. The microstructures in different regions of as-welded joints are diverse. Crystallization happens in heat-affected zone (HAZ) with crystalline dendritic phase of CuZr, which results in the deterioration of the microhardness to 434.9 ± 17.1 HV in HAZ, much lower than that of parent material as 517 ± 5.0 HV. Meanwhile, the element profiles indicate that intragranular segregation of Cu element occurs during the crystallization process. In the center of molten zone (MZ), the structure is fully amorphous and its hardness is close to that of parent material. In the region transiting from MZ to HAZ, some nano-grains with an average size of 20–50 nm are identified. In addition, several flower-like nanostructured grains of Y2O3 phase with a size ranging from 50 to 80 nm are formed in MZ’s matrix. The nanocrystallization is believed to be responsible for the enhancement of the Vickers hardness up to 560.1 ± 8.4 HV in this region.

Graphic Abstract

Rapid laser processing induces three kinds of microstructures in Zr61.4Cu27.8Al4Ni6Y0.8 bulk metallic glasses, i.e., the severe crystallization of CuZr phase in heat affected zones (HAZ), the nano-grains in the region transiting from molten zone (MZ) to HAZ, and the fully amorphous structure in the center of MZ, which consequently results in the diverse microhardness in spatial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Williams, N. Lavery, Laser processing of bulk metallic glass: a review. J. Mater. Process. Tech. 247, 73–91 (2017). https://doi.org/10.1016/j.jmatprotec.2017.03.034

    Article  CAS  Google Scholar 

  2. B. Chen, T. Shi, M. Li, Z. Zhang, Z. Zhu, G. Liao, Laser welding of Zr41Ti14Cu12Ni10Be23 bulk metallic glass: experiment and temperature field simulation. Adv. Eng. Mater. 15, 407–413 (2013). https://doi.org/10.1002/adem.201200308

    Article  CAS  Google Scholar 

  3. H.S. Wang, H.G. Chen, J.S.C. Jang, M.S. Chiou, Combination of a Nd:YAG laser and a liquid cooling device to (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass welding. Mater. Sci. Eng., A 528, 338–341 (2010). https://doi.org/10.1016/j.msea.2010.09.014

    Article  CAS  Google Scholar 

  4. R. Li, Z. Li, Y. Zhu, Q. Kai, Structure and corrosion resistance properties of Ni–Fe–B–Si–Nb amorphous composite coatings fabricated by laser processing. J. Alloy. Compd. 580, 327–331 (2013). https://doi.org/10.1016/j.jallcom.2013.06.111

    Article  CAS  Google Scholar 

  5. B. Li, Z.Y. Li, J.G. Xiong, L. Xing, D. Wang, Y. Li, Laser welding of Zr45Cu48Al7 bulk glassy alloy. J. Alloy. Compd. 413, 118–121 (2006). https://doi.org/10.1016/j.jallcom.2005.07.005

    Article  CAS  Google Scholar 

  6. B. Chen, T.L. Shi, M. Li, F. Yang, F. Yan, G.L. Liao, Laser welding of annealed Zr55Cu30Ni5Al10 bulk metallic glass. Intermetallics 46, 111–117 (2014). https://doi.org/10.1016/j.intermet.2013.11.008

    Article  CAS  Google Scholar 

  7. Y. Kawahito, T. Terajima, H. Kimura, T. Kuroda, K. Nakata, S. Katayama, A. Inoue, High-power fiber laser welding and its application to metallic glass Zr55Al10Ni5Cu30. Mater. Sci. Eng., B 148, 105–109 (2008). https://doi.org/10.1016/j.mseb.2007.09.062

    Article  CAS  Google Scholar 

  8. H. Wang, M. Chiou, H. Chen, J.S. Jang, The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass. Mater. Chem. Phys. 129, 547–552 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.067

    Article  CAS  Google Scholar 

  9. B. Chen, T. Shi, L. Mo, W. Chi, G. Liao, Crystallization of Zr55Cu30Al10Ni5 bulk metallic glass in laser welding: simulation and experiment. Adv. Eng. Mater. 17, 483–490 (2015)

    Article  CAS  Google Scholar 

  10. G. Wang, Y.J. Huang, M. Shagiev, J. Shen, Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass. Mater. Sci. Eng., A 541, 33–37 (2012). https://doi.org/10.1016/j.msea.2012.01.114

    Article  CAS  Google Scholar 

  11. H.S. Wang, H.G. Chen, S.C. Jang, Microstructure evolution in Nd:YAG laser-welded (Zr53Cu30Ni9Al8)Si0.5 bulk metallic glass alloy. J. Alloy. Compd. 495, 224–228 (2010). https://doi.org/10.1016/j.jallcom.2010.01.132

    Article  CAS  Google Scholar 

  12. W. Zhang, P. Tao, Q. Tu, D. Li, Y. Yang, Effect of laser surface melting on bulk metallic glass: investigation of microstructure, microhardness, friction and wear properties. J. Alloy. Compd. 732, 792–798 (2018). https://doi.org/10.1016/j.jallcom.2017.10.097

    Article  CAS  Google Scholar 

  13. F.H. Duan, Y. Lin, J. Pan, Y.X. Wang, J.H. Yao, Y. Li, Influence of oxygen on the glass formation of Mo-O binary alloys. J. Non-Cryst. Solids 500, 210–216 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.064

    Article  CAS  Google Scholar 

  14. R.W. Siegel, Nanostructured materials -mind over matter-. Nanostruct. Mater. 3, 1–18 (1993). https://doi.org/10.1016/0965-9773(93)90058-J

    Article  CAS  Google Scholar 

  15. C.T. Liu, M.F. Chisholm, M.K. Miller, Oxygen impurity and microalloying effect in a Zr-based bulk metallic glass alloy. Intermetallics 10, 1105–1112 (2002). https://doi.org/10.1016/s0966-9795(02)00131-0

    Article  CAS  Google Scholar 

  16. C.Y. Tam, C.H. Shek, Effects of alloying on oxidation of Cu-based bulk metallic glasses. J. Mater. Res. 20, 2647–2653 (2005). https://doi.org/10.1557/jmr.2005.0336

    Article  CAS  Google Scholar 

  17. A.R. Ahmed, S.S. Irhayyim, H.S. Hammood, Effect of yttrium oxide particles on the mechanical properties of polymer matrix composite. IOP Conf. Ser. Mater. Sci. Eng. 454, 12036 (2018)

    Article  Google Scholar 

  18. D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, 2003)

    Google Scholar 

  19. I. Barin, Thermochemical Data of Pure Substances, 3rd edn. (VCH, Vancouver, 1995)

    Book  Google Scholar 

  20. Y.J. Liu, H.W. Yao, T.W. Zhang, Z. Wang, Y.S. Wang, J.W. Qiao, H.J. Yang, Z.H. Wang, Designing ductile CuZr-based metallic glass matrix composites. Mater. Sci. Eng., A 682, 542–549 (2016). https://doi.org/10.1016/j.msea.2016.11.079

    Article  CAS  Google Scholar 

  21. Y. Wu, H. Wang, H.H. Wu, Z.Y. Zhang, X.D. Hui, G.L. Chen, D. Ma, X.L. Wang, Z.P. Lu, Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties. Acta Mater. 59, 2928–2936 (2011). https://doi.org/10.1016/j.actamat.2011.01.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by GDAS’s Project of Constructing Domestic First-class Research Institutions [Grant Number 2019GDASYL-0103075]; GDAS’s Project of Science and Technology Development [Grant Number 2017GDASCX-01]; Science and Technology Planning Project of Guangdong Province [Grant Number 2014B070705007]. We also thank Dr. Zhang and Dr. Zheng from ZKKF(Beijing) Science & Technology Co., Ltd for microstructure characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yu, C., Xu, W. et al. Microstructure Transformation in Different Regions of Zr61.4Cu27.8Al4Ni6Y0.8 Bulk Metallic Glass Induced by Rapid Laser Welding. Met. Mater. Int. 27, 5314–5321 (2021). https://doi.org/10.1007/s12540-020-00810-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00810-w

Keywords

Navigation