Skip to main content
Log in

Wear Resistance of Different Bionic Structure Manufactured by Laser Cladding on Ti6Al4V

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this study, the laser cladding system with an IPG YLS-6000 fiber laser was used, and the WC–Ti6Al4V powder reinforced composite coatings on Ti6Al4V titanium alloy with various bionic structures were innovatively fabricated. The microstructures and surface damage behavior of the coatings were characterized by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Additionally, the wear resistance of different bionic structures was evaluated, which had not been comprehensively explored in the published literature. The results indicated that the un-melted WC particles in the coatings act as a hard reinforcement, avoiding serious wear of the coating. In addition, the hard coatings exhibit excellent deformation resistance and the soft substrate cushion the shear stress. So when the “Ratio”, which refers to the laser cladding area to sample area, is between 0.25 and 0.3, the sample has the highest wear resistance. Furthermore, the “Dot + Line” bionic structure has the best wear resistance compared with other structures. The separated line units and the addition of dot units can improve the stress concentration state of bionic structure are conducive to release the stress to the substrate under the cladding layer.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.Q. Wang, T.J. Ma, W.Y. Li, G.D. Wen, D.L. Chen, Microstructure and fatigue properties of linear friction welded TC4 titanium alloy joints. Sci. Technol. Weld. Join. 22(3), 1–5 (2016). https://doi.org/10.1080/13621718.2016.1212971

    Article  CAS  Google Scholar 

  2. Lin YH, Lei YP, Fu HG, Lin J (2015) Mechanical properties and toughening mechanism of TiB2/NiTi reinforced titanium matrix composite coating by laser cladding. Mater. Des. 80: 82–88. https://doi.org/10.1016/j.matdes.2015.05.009

    Article  CAS  Google Scholar 

  3. T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components: process, structure and properties. Prog. Mater. Sci. 92, 112–224 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  CAS  Google Scholar 

  4. F. Weng, C.Z. Chen, H.J. Yu, Research status of laser cladding on titanium and its alloys: a review. Mater. Des. 58, 412–425 (2014). https://doi.org/10.1016/j.matdes.2014.01.077

    Article  CAS  Google Scholar 

  5. M. Jones, A.J. Horlock, P.H. Shipway, D.G. McCartney, J.V. Wood, A comparison of the abrasive wear behavior of HVOF sprayed titanium carbide-and titanium boride-based cermet coatings. Wear 251(1–12), 1009–1016 (2001). https://doi.org/10.1016/S0043-1648(01)00702-5

    Article  Google Scholar 

  6. A. Zhecheva, W. Sha, S. Malinov, A. Long, Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods. Surf. Coat. Technol. 200(7), 2192–2207 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.115

    Article  CAS  Google Scholar 

  7. B. Courant, J.J. Hantzpergue, L. Avril, S. Benayoun, Structure and hardness of titanium surfaces carburized by pulsed laser melting with graphite addition. J. Mater. Process. Technol. 160(3), 374–381 (2005). https://doi.org/10.1016/j.jmatprotec.2004.06.025

    Article  CAS  Google Scholar 

  8. F. Movassagh-Alanagh, A. Abdollah-Zadeh, M. Aliofkhazraei, M. Abedi, Improving the wear and corrosion resistance of Ti-6Al-4V alloy by deposition of TiSiN nanocomposite coating with pulsed-DC PACVD. Wear 390–391, 93–103 (2017). https://doi.org/10.1016/j.wear.2017.07.009

    Article  CAS  Google Scholar 

  9. E. Marin, R. Offoiach, M. Regis, S. Fusi, A. Lanzutti, L. Fedrizzi, Diffusive thermal treatments combined with PVD coatings for tribological protection of titanium alloys. Mater. Des. 89, 314–322 (2016). https://doi.org/10.1016/j.matdes.2015.10.011

    Article  CAS  Google Scholar 

  10. P.L. Zhang, X.P. Liu, H. Yan, Phase composition, microstructure evolution and wear behavior of Ni–Mn–Si coatings on copper by laser cladding. Surf. Coat. Technol. 332, 504–510 (2017). https://doi.org/10.1016/j.surfcoat.2017.08.072

    Article  CAS  Google Scholar 

  11. X.L. Lu, X.B. Liu, P.C. Yu, S.J. Qiao, Y.J. Zhai, M.D. Wang, Y. Chen, D. Xu, Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding. Opt. Laser Technol. 78(5), 87–94 (2016). https://doi.org/10.1016/j.optlastec.2015.10.005

    Article  CAS  Google Scholar 

  12. G.F. Sun, Y.K. Zhang, C.S. Liu, K.Y. Luo, X.Q. Tao, P. Li, Microstructure and wear resistance enhancement of cast steel rolls by laser surface alloying NiCr–CrC. Mater. Des. 31(6), 2737–2744 (2010). https://doi.org/10.1016/j.matdes.2010.01.021

    Article  CAS  Google Scholar 

  13. G.Y. Wang, J.Z. Zhang, R.Y. Shu, S. Yang, High temperature wear resistance and thermal fatigue behavior of Stellite-6/WC coatings produced by laser cladding with Co-coated WC powder. Int. J. Refract. Met. Hard Mater. 81, 63–70 (2019). https://doi.org/10.1016/j.ijrmhm.2019.02.024

    Article  CAS  Google Scholar 

  14. Lin YH, Yao JH, Lei YP, Fu HG, Wang L (2016) Microstructure and properties of TiB2–TiB reinforced titanium matrix composite coating by laser cladding. Opt. Lasers Eng. 86: 216–227. https://doi.org/10.1016/j.optlaseng.2016.06.013

    Article  Google Scholar 

  15. J.X. Yang, Z.Y. Xiao, F. Yang, H. Chen, X.B. Wang, S.F. Zhou, Microstructure and magnetic properties of NiCrMoAl/WC coatings by laser cladding: effect of WC metallurgical behaviors. Surf. Coat. Technol. 350, 110–118 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.021

    Article  CAS  Google Scholar 

  16. G. Muvvala, D.P. Karmakar, A.K. Nath, Online assessment of TiC decomposition in laser cladding of metal matrix composite coating. Mater. Des. 121, 310–320 (2017). https://doi.org/10.1016/j.matdes.2017.02.061

    Article  CAS  Google Scholar 

  17. A. Riquelme, M.D. Escalera-Rodriguez, P. Rodrigo, J. Rams, Role of laser cladding parameters in composite coating (Al–SiC) on aluminum alloy. J. Therm. Spray Technol. 25(6), 1177–1191 (2016). https://doi.org/10.1007/s11666-016-0431-7

    Article  Google Scholar 

  18. X. Jiang, D.Q. Zhao, Y.X. Wang, W.S. Duan, L.P. Wang, Toward hard yet tough VC coating via modulating compressive stress and nanostructure to enhance its protective performance in seawater. Ceram. Int. 45(1), 1049–1057 (2019). https://doi.org/10.1016/j.ceramint.2018.09.284

    Article  CAS  Google Scholar 

  19. S.R. Al-Sayed, A.A. Hussein, A.A. Nofal, S.I. Hassab Elnaby, H. Elgazzar, H.A. Sabour, Laser powder cladding of Ti-6Al-4V α/β alloy. Materials 10(10), 1178 (2017). https://doi.org/10.3390/ma10101178

    Article  CAS  Google Scholar 

  20. K.M. Wang, D. Du, G. Liu, B.H. Chang, Y.X. Hong, Microstructure and properties of WC reinforced Ni-based composite coatings with Y2O3 addition on titanium alloy by laser cladding. Sci. Technol. Weld. Join. 24(5), 517–524 (2019). https://doi.org/10.1080/13621718.2019.1580441

    Article  CAS  Google Scholar 

  21. S.Y. Xie, R.D. Li, T.C. Yuan, C. Chen, K.C. Zhou, B. Song, Y.S. Shi, Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure. Opt. Laser Technol. 99, 374–381 (2018). https://doi.org/10.1016/j.optlastec.2017.09.025

    Article  CAS  Google Scholar 

  22. Z.K. Weng, A.H. Wang, X.H. Wu, Y.Y. Wang, Z.X. Yang, Wear resistance of diode laser-clad Ni/WC composite coatings at different temperatures. Surf. Coat. Technol. 304, 283–292 (2016). https://doi.org/10.1016/j.surfcoat.2016.06.081

    Article  CAS  Google Scholar 

  23. H.B. Jiang, Y.Q. Liu, Y.L. Zhang, Y. Liu, X.Y. Fu, D.D. Han, Y.Y. Song, L.Q. Ren, H.B. Sun, Reed leaf-inspired graphene films with anisotropic super-hydrophobicity. ACS Appl. Mater. Interfaces. 10, 18416–18425 (2018). https://doi.org/10.1021/acsami.8b03738

    Article  CAS  Google Scholar 

  24. A. Arjangpay, A. Darvizeh, M.Y. Tooski, Effects of structural characteristics of a bionic dragonfly wing on its low velocity impact resistance. J. Bionic Eng. 15(5), 859–871 (2018). https://doi.org/10.1007/s42235-018-0073-1

    Article  Google Scholar 

  25. H. Zhang, S.H. Liu, H.P. Xiao, X. Zhang, Synthesis and tribological properties of bio-inspired nacre-like composites. Materials 11(9), 1563 (2018). https://doi.org/10.3390/ma11091563

    Article  CAS  Google Scholar 

  26. Z.W. Han, H.L. Feng, W. Yin, S.C. Niu, J.Q. Zhang, D.B. Chen, An efficient bionic anti-erosion functional surface inspired by desert scorpion carapace. Tribol. Trans. 58(2), 357–364 (2015). https://doi.org/10.1080/10402004.2014.971996

    Article  CAS  Google Scholar 

  27. K. Jones, S.R. Schmid, Experimental investigation of laser texturing and its effect on friction and lubrication. Procedia Manuf. 5, 568–577 (2016). https://doi.org/10.1016/j.promfg.2016.08.047

    Article  Google Scholar 

  28. M. Cho, Friction and wear of a hybrid surface texturing of polyphenylene sulfide-filled micropores. Wear 346, 158–167 (2015). https://doi.org/10.1016/j.wear.2015.11.010

    Article  CAS  Google Scholar 

  29. H.F. Zhang, P. Zhang, Q. Sui, K. Zhao, H. Zhou, L.Q. Ren, Influence of multiple bionic unit coupling on sliding wear of laser-processed gray cast iron. J. Mater. Eng. Perform. 26(4), 1614–1625 (2017). https://doi.org/10.1007/s11665-017-2600-3

    Article  CAS  Google Scholar 

  30. Y.Q. Wang, B.T. Liu, Z.C. Guo, Wear resistance of machine tools’ bionic linear rolling guides by laser cladding. Opt. Laser Technol. 91, 55–62 (2017). https://doi.org/10.1016/j.optlastec.2016.12.015

    Article  CAS  Google Scholar 

  31. C.Q. Qi, X.H. Zhan, Q.Y. Gao, L.J. Liu, Y.Z. Song, Y.P. Li, The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding. Opt. Laser Technol. 119, 105572 (2019). https://doi.org/10.1016/j.optlastec.2019.105572

    Article  CAS  Google Scholar 

  32. S.R. Al-Sayed, A.A. Hussein, A. Nofal, S.I. Hassab Elnaby, H. Elgazzar, H. Elgazzar, A contribution to laser cladding of Ti-6Al-4V titanium alloy. Metall. Res. Technol 116, 634 (2017). https://doi.org/10.1051/metal/2019060

    Article  CAS  Google Scholar 

  33. P.K. Farayibi, Microstructural evolution of metal matrix composites formed by laser deposition of Ti-6Al-4V wire and WC-W2C powder. Adv. Eng. Forum 26, 22–32 (2018). https://doi.org/10.4028/www.scientific.net/AEF.26.22

    Article  Google Scholar 

  34. A. Ortiz, A. García, M. Cadenas, M.R. Fernández, J.M. Cuetos, WC particles distribution model in the cross-section of laser cladded NiCrBSi + WC coatings, for different wt.% WC. Surf. Coat. Technol. 324, 298–306 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.086

    Article  CAS  Google Scholar 

  35. Zhou Y, Wang SQ, Huang KZ, Zhang B, Wen GH, Cui XH (2017) Improvement of tribological performance of TC11 alloy via formation of a double-layer tribo-layer containing graphene/Fe2O3 nanocomposite. Tribol Int 109: 485–495. https://doi.org/10.1016/j.triboint.2017.01.025

    Article  CAS  Google Scholar 

  36. Chen BB, Chen S, Yang J, Li HP (2015) Tribological properties of Cu-based composites with S-doped NbSe2. Rare Met. 34(6): 407–412. https://doi.org/10.1007/s12598-015-0464-y

    Article  CAS  Google Scholar 

  37. X.P. Tao, S. Zhang, C.H. Zhang, C.L. Wu, J. Chen, A.O. Abdullah, Effect of Fe and Ni contents on microstructure and wear resistance of aluminum bronze coatings on 316 stainless steel by laser cladding. Surf. Coat. Technol. 342, 76–84 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Commercial Aircraft Manufacturing Technology Research Center Innovation Fund of China (COMAC-SFGS-2017-36736).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Zhan, X., Bu, H. et al. Wear Resistance of Different Bionic Structure Manufactured by Laser Cladding on Ti6Al4V. Met. Mater. Int. 27, 2319–2327 (2021). https://doi.org/10.1007/s12540-020-00765-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00765-y

Keywords

Navigation