Skip to main content
Log in

Impact of Post Hardening Mechanism on Self-Healing Assessment of AA2014 Nitinol-Based Smart Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Exploring the self-healing capability in a metallic system, an experimental study was carried out for AA2014 and Nitinol-based smart composites material. The damage produced through the flexural test was healed by thermal heat treatment through compositional healing. The objective of this work is to enhance the recovery in self-healing assessment through different hardening processes. Strengthening model (solution hardening and age hardening) as a strength enhancement is employed on the healed samples (i.e. after heat treatment) to evaluate its effect and impact on different healing assessments. Further, XRD analysis was performed to explain how the developed residual stress in the microstructure is responsible in affecting the healing characteristics after each heat treatment processes. The obtained result show about 81.66% recovery in crack depth, 23.92% recovery in ductility, 84.3% recovery in crack width and 27.8% recovery in flexural strength after ageing.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y. Nishida, in Introduction to Metal Matrix Composites Fabrication and Recycling, ed. by Y. Nishida (Springer, Tokyo, 2013), pp. 27–50

    Chapter  Google Scholar 

  2. P.K. Rohatgi, Def. Sci. J. 43, 323–349 (1993)

    Article  CAS  Google Scholar 

  3. J. Hooker, P. Doorbar, in Series in Materials Science and Engineering Series- Metal and Ceramic Matrix Composites, 7th edn., (Institute of Physics Publishing, London, 2004). https://www.taylorfrancis.com/books/9781420033977)

  4. M.V. Manuel, in Self Healing Materials, vol. 100, ed. by S. KumarGhosh (Wiley VCH, Hoboken, 2007), pp. 251–263. https://doi.org/10.1007/978-1-4020-6250-6

    Chapter  Google Scholar 

  5. E. Schlangen, N. Heide, K. Van Breugel, in Measuring, Monitoring and Modeling Concrete Properties, ed. by M.S. Konsta-Gdoutos (Springer, Dordrecht, 2006), pp. 273–284

    Chapter  Google Scholar 

  6. A. K. Chattopadhyay, M. R. Zentner, Aerospace and Aircraft Coatings (Federation of Societies for Coatings Technology, Philadelphia, PA, 1990), p. 18

    Google Scholar 

  7. G. Bierwagen, J. Coat. Technol. 73, 45–52 (2001)

    Article  CAS  Google Scholar 

  8. Y. Wang, D.T. Pham, C. Ji, Cogent Eng. 2012, 1–28 (2015)

    Google Scholar 

  9. A.D. Moghadam et al., JOM 66, 872–881 (2014)

    Article  CAS  Google Scholar 

  10. J.J. Sobczak, L. Drenchev, Self-Healing Metallic Materials (Instytut Odlewnictwa, Foundry Research Institute, Krakow, 2014), pp. 68–77

    Google Scholar 

  11. J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, JOM 66, 866–871 (2014)

    Article  CAS  Google Scholar 

  12. B.J. Blaiszik et al., Annu. Rev. Mater. Res. 40, 179–211 (2010)

    Article  CAS  Google Scholar 

  13. R.A.J. Martinez-Lucci, A. Ruzek, S.K. Misra, P.K. Rohatgi, AFS Trans. Foundry Soc. 119, 187 (2011)

    CAS  Google Scholar 

  14. K.K. Alaneme, M.O. Bodunrin, Appl. Mater. Today 6, 9–15 (2017)

    Article  Google Scholar 

  15. M. Nosonovsky, P.K. Rohatgi, in Biomimetics in Material Science, ed. by R. Hull, C. Jagadish, R.M. Osgood, J.J. Parisi, Z. Wang (Springer, New York, 2012), pp. 87–122

    Chapter  Google Scholar 

  16. V. Srivastava, M. Gupta, Mater. Today Proc. 2018 Publ. 5, 19703–19713 (2018)

    Google Scholar 

  17. M.V. Manuel, G. B. Olson, in Proceedings on 1st International Conference of Self-Healing Materials, pp. 1–10 (2007)

  18. M. Viola, Thesis (Northwestern University, 2007)

  19. J.B. Ferguson, B.F. Schultz, P.K. Rohatgi, Mater. Sci. Eng. A 620, 85–88 (2014)

    Article  CAS  Google Scholar 

  20. M.A. Poormir, S. Mohammad, R. Khalili, J. Intell. Mater. Syst. Struct. SAGE 29, 3972–3982 (2018)

    Article  CAS  Google Scholar 

  21. M.A. Poormir, S. Mohammad, R. Khalili, JOM 70, 806–810 (2018)

    Article  CAS  Google Scholar 

  22. R. Sadeler, Y. Totik, M. Gavgali, I. Kaymaz, Mater. Des. 25, 439–445 (2004)

    Article  CAS  Google Scholar 

  23. A.A. Saleh, Contemp. Eng. Sci. 11, 3409–3419 (2018)

    Article  CAS  Google Scholar 

  24. K.B. Sravani, A. Uma, V. Sindhu, S.P. Devi, G. Padmava, Int. J. Adv. Mech. Civ. Eng. 3, 79–83 (2016)

    Google Scholar 

  25. S.K. Burke, Non Destruct. Aust. 39, 18–22 (2002)

    Google Scholar 

  26. W.D. Callister, J. Wiley, in Materials Science and Engineering an Introduction, 7th edn., ed. by W.D. Callister (Wiley, Salt City Lake, UT, 2006), pp. 252–304

    Google Scholar 

  27. B.D. Cullity, in Elements of X-Ray Diffraction, 2nd edn., ed. by M. Cohen (Addison-Wesley Publishing Company, Inc, Philippines, 1977), pp. 281–321

    Google Scholar 

  28. A. Jesche, M. Fix, A. Kreyssig, W.R. Meier, P.C. Canfield, Philos. Mag. 96, 1–9 (2016)

    Article  CAS  Google Scholar 

  29. L. Alexander, H.P. Klug, J. Appl. Phys. 21, 1–7 (1950)

    Article  Google Scholar 

  30. A.J.C. Wilson, J. Appl. Crystallogr. 11, 102–113 (1978)

    Article  Google Scholar 

  31. H. Xu, H. Guo (eds.), Thermal Barrier Coatings (Woodhead Publishing Limited, Sawston, 2011), pp. 75–96. https://doi.org/10.1533/9780857090829.1.75

    Book  Google Scholar 

  32. A. Younes et al., Appl. Surf. Sci. 446, 258–265 (2018)

    Article  CAS  Google Scholar 

  33. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  34. I. Kaban, S. Mhiaoui, W. Hoyer, J.-G. Gasser, J. Phys.: Condens. Matter 17, 7867–7873 (2005)

    CAS  Google Scholar 

  35. M.C. Wright, M. Manuel, T. Wallace, Fatigue Resistance of Liquid-Assisted Self-Repairing Aluminum Alloys Reinforced with Shape Memory Alloys Shape Memory Alloy: Self-Healing (SMASH) Technology for Aeronautical Applications (Hanover, 2013). Available at https://nari.arc.nasa.gov/sites/default/files/Wright_ARMDFY12SeedlingFinalReportKSCCWrightSMASHTechnology.pdf

  36. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    Article  CAS  Google Scholar 

  37. T. Ungar, Scr. Mater. 51, 777–781 (2004)

    Article  CAS  Google Scholar 

  38. R. N. Lumley, I. J. Polmear, in Proceedings of the First International Conference on Self Healing Materials (Springer, 2007), pp. 1–11

  39. P.K. Rohatgi, Mater. Sci. Eng. 619, 73–76 (2014)

    Article  CAS  Google Scholar 

  40. K. Venkateswarlu, M. Sandhyarani, T.A. Nellaippan, N. Rameshbabu, Procedia Mater. Sci. 5, 212–221 (2014)

    Article  CAS  Google Scholar 

  41. A.M. Page, T.A. Wesley, in Exploration: Natural Science and Engineering (2015), pp. 101–108

  42. S.J. Park, K. Cowan, J.L. Johnson, R.M. German, Int. J. Refract. Metals Hard Mater. 26, 152–163 (2008)

    Article  CAS  Google Scholar 

  43. H. Engqvist, Int. J. Refract. Metals Hard Mater. 21, 31–35 (2003)

    Article  CAS  Google Scholar 

  44. Z.C. Cordero et al., Int. Mater. Rev. 66, 495–512 (2016)

    Article  CAS  Google Scholar 

  45. N. Hansen, Scr. Mater. 51, 801–806 (2004)

    Article  CAS  Google Scholar 

  46. M. Kato, Mater. Trans. 55, 19–24 (2014)

    Article  CAS  Google Scholar 

  47. Q. Xiao et al., J. Alloys Compd. 695, 1005–1013 (2019)

    Article  CAS  Google Scholar 

  48. F. Tariq, N. Naz, R. Ahmed, J. Nondestr. Eval. 31, 17–33 (2012)

    Article  Google Scholar 

  49. F.K. Md, S.K. Panigrahi, J. Magnes. Alloys 3, 210–217 (2015)

    Article  CAS  Google Scholar 

  50. V. Srivastava, M. Gupta, Mater. Res. Express 6, 1–18 (2019)

    Google Scholar 

  51. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34–46 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Advanced Center for Materials Science and Material Science Engineering Department, Indian Institute of Technology Kanpur, India for extending the facilities for conducting SEM (Imaging). I would be thankful to Center for Interdisciplinary Research, Motilal Nehru National Institute of Technology Allahabad, India for performing XRD analysis. I am grateful to Director, Gulachi Engineers Pvt. ltd., Ghaziabad, India for providing Eddy current test facility. The Ministry of Human Resource Development, Government of India is gratefully acknowledged for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaibhav Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, V., Gupta, M. Impact of Post Hardening Mechanism on Self-Healing Assessment of AA2014 Nitinol-Based Smart Composites. Met. Mater. Int. 27, 2666–2681 (2021). https://doi.org/10.1007/s12540-020-00630-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00630-y

Keywords

Navigation