Skip to main content
Log in

Influence of Ball Milling, Cold Rolling and Doping (Zr + 2Cr) on Microstructure, First Hydrogenation Properties and Anti-poisoning Ability of TiFe Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

A Correction to this article was published on 21 February 2020

This article has been updated

Abstract

In this paper, we found that the first hydrogenation properties of TiFe alloy can be significantly improved by ball milling, cold rolling and doping. The samples by ball milling for 60 min and doped with (Zr + 2Cr) as additive showed a faster hydrogenation kinetics and the sample cold rolled for 5 passes showed the highest hydrogen capacity. Further study, it was clear that the first hydrogenation of TiFe ingot could be easily activated by using ball milling. The first hydrogenation kinetics of ball-milled TiFe was strongly dependent on ball milling time. Doping (Zr + 2Cr) made TiFe alloy show excellent first hydrogenation kinetics and better anti-poisoning property due to the presence of bright phase. In addition, the doped sample with prolonged air-exposed time about 30 h could not be activated at all, but cold rolling could effectively make the totally dead sample active again and leads to the faster first hydrogenation kinetics and higher hydrogen storage capacity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. A.P. Soldatov, Mechanism of hydrogen adsorption in graphene nanostructures synthesized in membrane pores and on zeolites. Russ. J. Phys. Chem. A 93, 494–500 (2019)

    CAS  Google Scholar 

  2. G. Deyu, J. Zhang, Y. Liu, Y. Zhang, Y. Zhu, L. Li, Purity of MgH2 improved by the process of pre-milling assisted hydriding of Mg powder under a hydrogen pressure of 0.5 MPa. Russ. J. Phys. Chem. A 93, 665–673 (2019)

    Google Scholar 

  3. N.A. Abdul Majid, N. Maeda, M. Notomi, Improved hydrogen desorption properties of magnesium hydride with TiFe0.8Mn0.2, graphite and iron addition. Int. J. Hydrog. Energy, (2019). https://doi.org/10.1016/j.ijhydene.2019.02.190

    Article  Google Scholar 

  4. K. Hirose, M. Hirscher, Handbook of Hydrogen Storage: New Materials for Future Energy Storage (Wiley, Hoboken, 2010)

    Google Scholar 

  5. R.A. Varin, T. Czujko, Z.S. Wronski, Nanomaterials for Solid State Hydrogen Storage (Springer, Berlin, 2009)

    Google Scholar 

  6. P. Chen, M. Zhu, Recent progress in hydrogen storage. Mater. Today 11, 36–43 (2008)

    Google Scholar 

  7. S.S. Srinivasan, D.E. Demirocak, Metal Hydrides used for Hydrogen Storage, in Nanostructured Materials for Next-Generation Energy Storage and Conversion: Hydrogen Production, Storage, and Utilization, ed. by Y.-P. Chen, S. Bashir, J.L. Liu (Springer, Berlin, 2017), pp. 225–255

    Google Scholar 

  8. G. Principi, F. Agresti, A. Maddalena, S.L. Russo, The problem of solid state hydrogen storage. Energy 34, 2087–2091 (2009)

    CAS  Google Scholar 

  9. V.Y. Zadorozhnyy, G.S. Milovzorov, S.N. Klyamkin, M.Y. Zadorozhnyy, D.V. Strugova, M.V. Gorshenkov, S.D. Kaloshkin, Preparation and hydrogen storage properties of nanocrystalline TiFe synthesized by mechanical alloying. Prog. Nat. Sci. Mater. Int. 27, 149–155 (2017)

    CAS  Google Scholar 

  10. P. Lv, J. Huot, Hydrogenation improvement of TiFe by adding ZrMn2. Energy 138, 375–382 (2017)

    CAS  Google Scholar 

  11. H. Leng, Z. Yu, J. Yin, Q. Li, Z. Wu, K.-C. Chou, Effects of Ce on the hydrogen storage properties of TiFe0.9Mn0.1 alloy. Int. J. Hydrog. Energy 42, 23731–23736 (2017)

    CAS  Google Scholar 

  12. W. Ali, M. Li, P. Gao, C. Wu, Q. Li, X. Lu, C. Li, Hydrogenation properties of Ti–Fe–Mn alloy with Cu and Y as additives. Int. J. Hydrog. Energy 42, 2229–2238 (2017)

    CAS  Google Scholar 

  13. J. Yin, Q. Li, H. Leng, Advances in improvement of hydrogen storage properties of TiFe-based alloys. Mater. Rev. 24, 141–147 (2016)

    Google Scholar 

  14. P. Lv, J. Huot, Hydrogen storage properties of Ti0.95FeZr0.05, TiFe0.95Zr0.05 and TiFeZr0.05 alloys. Int. J. Hydrog. Energy 41, 22128–22133 (2016)

    CAS  Google Scholar 

  15. C. Gosselin, J. Huot, Hydrogenation properties of TiFe doped with zirconium. Materials 8, 7864–7872 (2015)

    CAS  Google Scholar 

  16. H. Emami, K. Edalati, J. Matsuda, E. Akiba, Z. Horita, Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater. 88, 190–195 (2015)

    CAS  Google Scholar 

  17. L.E.R. Vega, D.R. Leiva, R.M. Leal Neto, W.B. Silva, R.A. Silva, T.T. Ishikawa, C.S. Kiminami, W.J. Botta, Mechanical activation of TiFe for hydrogen storage by cold rolling under inert atmosphere. Int. J. Hydrog. Energy 43, 2913–2918 (2018)

    CAS  Google Scholar 

  18. J. Manna, B. Tougas, J. Huot, Mechanical activation of air exposed TiFe + 4 wt% Zr alloy for hydrogenation by cold rolling and ball milling. Int. J. Hydrog. Energy 43, 20795–20800 (2018)

    CAS  Google Scholar 

  19. K. Edalati, J. Matsuda, A. Yanagida, E. Akiba, Z. Horita, Activation of TiFe for hydrogen storage by plastic deformation using groove rolling and high-pressure torsion: similarities and differences. Int. J. Hydrog. Energy 39, 15589–15594 (2014)

    CAS  Google Scholar 

  20. M.W. Davids, M. Lototskyy, A. Nechaev, Q. Naidoo, M. Williams, Y. Klochko, Surface modification of TiFe hydrogen storage alloy by metal-organic chemical vapour deposition of palladium. Int. J. Hydrog. Energy 36, 9743–9750 (2011)

    CAS  Google Scholar 

  21. D. Khatamian, G. Weatherly, F. Manchester, Some effects of activation for hydrogen absorption in FeTi powder. Acta Metall. 31, 1771–1780 (1983)

    CAS  Google Scholar 

  22. T. Schober, D. Westlake, The activation of FeTi for hydrogen storage: a different view. Scr. Metall. 15, 913–918 (1981)

    CAS  Google Scholar 

  23. K. Edalati, J. Matsuda, M. Arita, T. Daio, E. Akiba, Z. Horita, Mechanism of activation of TiFe intermetallics for hydrogen storage by severe plastic deformation using high-pressure torsion. Appl. Phys. Lett. 103, 143902 (2013)

    Google Scholar 

  24. S.K. Kulshreshtha, R. Sasikala, K.K. Pushpa, K.A. Rao, R.M. Iyer, On activation of FeTi: surface effects. Mater. Res. Bull. 24, 545–550 (1989)

    CAS  Google Scholar 

  25. T. Schober, On the activation of FeTi for hydrogen storage. J. Less-Common Metals 89, 63–70 (1982)

    Google Scholar 

  26. C.G. Figueroa, R. Schouwenaars, J. Cortés-Pérez, R. Petrov, L. Kestens, Ultrafine gradient microstructure induced by severe plastic deformation under sliding contact conditions in copper. Mater. Charact. 138, 263–273 (2018)

    CAS  Google Scholar 

  27. J. Huot, Nanocrystalline metal hydrides obtained by severe plastic deformations. Metals 2, 22–40 (2012)

    CAS  Google Scholar 

  28. Y.S. Kim, E. Choi, W.J. Kim, Characterization of the microstructures and the shape memory properties of the Fe–Mn–Si–Cr–Ni–C shape memory alloy after severe plastic deformation by differential speed rolling and subsequent annealing. Mater. Charact. 136, 12–19 (2018)

    CAS  Google Scholar 

  29. M. Němec, V. Gärtnerová, A. Jäger, Influence of severe plastic deformation on intermetallic particles in Mg-12wt.%Zn alloy investigated using transmission electron microscopy. Mater. Charact. 119, 129–136 (2016)

    Google Scholar 

  30. M. Němec, A. Jäger, K. Tesař, V. Gärtnerová, Influence of alloying element Zn on the microstructural, mechanical and corrosion properties of binary Mg–Zn alloys after severe plastic deformation. Mater. Charact. 134, 69–75 (2017)

    Google Scholar 

  31. L.S. Toth, C. Gu, Ultrafine-grain metals by severe plastic deformation. Mater. Charact. 92, 1–14 (2014)

    CAS  Google Scholar 

  32. S.-H. Hong, M.Y. Song, Preparation of Mg–MgH2 flakes by planetary ball milling with stearic acid and their hydrogen storage properties. Met. Mater. Int. 22, 544–549 (2016)

    CAS  Google Scholar 

  33. S.-H. Hong, M.Y. Song, Preparation of a sample with a single MgH2 phase by horizontal ball milling and the first hydriding reaction of 90 wt% Mg-10 wt% MgH2. Met. Mater. Int. 21, 422–428 (2015)

    CAS  Google Scholar 

  34. M.D.K. Dewa, S. Wiryolukito, H. Suwarno, Hydrogen absorption capacity of Fe–Ti–Al alloy prepared by high energy ball milling. Energy Proc. 68, 318–325 (2015)

    CAS  Google Scholar 

  35. S. Khajavi, M. Rajabi, J. Huot, Effect of cold rolling and ball milling on first hydrogenation of Ti0.5Zr0.5 (Mn1−xFex) Cr1, x = 0, 0.2, 0.4. J. Alloys Compd. 775, 912–920 (2019)

    CAS  Google Scholar 

  36. A.A.C. Asselli, D.R. Leiva, G.H. Cozentino, R. Floriano, J. Huot, T.T. Ishikawa, W.J. Botta, Hydrogen storage properties of MgH2 processed by cold forging. J. Alloys Compd. 615, S719–S724 (2014)

    CAS  Google Scholar 

  37. M.I. Abd El Aal, N. El Mahallawy, F.A. Shehata, M. Abd El Hameed, E.Y. Yoon, H.S. Kim, Wear properties of ECAP-processed ultrafine grained Al–Cu alloys. Mater. Sci. Eng. A 527, 3726–3732 (2010)

    Google Scholar 

  38. A.M. Jorge, E. Prokofiev, G.F. de Lima, E. Rauch, M. Veron, W.J. Botta, M. Kawasaki, T.G. Langdon, An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int. J. Hydrog. Energy 38, 8306–8312 (2013)

    CAS  Google Scholar 

  39. Á. Révész, M. Gajdics, L.K. Varga, G. Krállics, L. Péter, T. Spassov, Hydrogen storage of nanocrystalline Mg–Ni alloy processed by equal-channel angular pressing and cold rolling. Int. J. Hydrog. Energy 39, 9911–9917 (2014)

    Google Scholar 

  40. L. Wang, J. Jiang, A. Ma, Y. Li, D. Song, A critical review of Mg-based hydrogen storage materials processed by equal channel angular pressing. Metals 7, 324 (2017)

    Google Scholar 

  41. N. Endo, S. Suzuki, K. Goshome, T. Maeda, Operation of a bench-scale TiFe-based alloy tank under mild conditions for low-cost stationary hydrogen storage. Int. J. Hydrog. Energy 42, 5246–5251 (2017)

    CAS  Google Scholar 

  42. K. Edalati, J. Matsuda, H. Iwaoka, S. Toh, E. Akiba, Z. Horita, High-pressure torsion of TiFe intermetallics for activation of hydrogen storage at room temperature with heterogeneous nanostructure. Int. J. Hydrog. Energy 38, 4622–4627 (2013)

    CAS  Google Scholar 

  43. M. Abe, T. Kuji, Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing. J. Alloys Compd. 446–447, 200–203 (2007)

    Google Scholar 

  44. V.Y. Zadorozhnyy, S.N. Klyamkin, M.Y. Zadorozhnyy, O.V. Bermesheva, S.D. Kaloshkin, Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium. J. Alloys Compd. 586, S56–S60 (2014)

    CAS  Google Scholar 

  45. V.Y. Zadorozhnyy, S.N. Klyamkin, MYu. Zadorozhnyy, M.V. Gorshenkov, S.D. Kaloshkin, Mechanical alloying of nanocrystalline intermetallic compound TiFe doped with sulfur and magnesium. J. Alloys Compd. 615, S569–S572 (2014)

    CAS  Google Scholar 

  46. V. Zadorozhnyy, S. Klyamkin, M. Zadorozhnyy, O. Bermesheva, S. Kaloshkin, Hydrogen storage nanocrystalline TiFe intermetallic compound: synthesis by mechanical alloying and compacting. Int. J. Hydrog. Energy 37, 17131–17136 (2012)

    CAS  Google Scholar 

  47. V.Y. Zadorozhnyy, S. Klyamkin, S. Kaloshkin, M.Y. Zadorozhnyy, O. Bermesheva, Mechanochemical synthesis and hydrogen sorption properties of nanocrystalline TiFe. Inorg. Mater. 47, 1081–1086 (2011)

    CAS  Google Scholar 

  48. V. Zadorozhnyy, E. Berdonosova, C. Gammer, J. Eckert, M. Zadorozhnyy, A. Bazlov, M. Zheleznyi, S. Kaloshkin, S. Klyamkin, Mechanochemical synthesis and hydrogenation behavior of (TiFe)100–xNix alloys. J. Alloys Compd. 796, 42–46 (2019)

    CAS  Google Scholar 

  49. Y. Li, H. Shang, Y. Zhang, P. Li, Y. Qi, D. Zhao, Investigations on gaseous hydrogen storage performances and reactivation ability of as-cast TiFe1–xNix (x = 0, 0.1, 0.2 and 0.4) alloys. Int. J. Hydrog. Energy 44, 4240–4252 (2019)

    CAS  Google Scholar 

  50. H. Shang, Y. Li, Y. Zhang, Y. Qi, S. Guo, D. Zhao, Structure and hydrogenation performances of as-cast Ti1.1−xRExFe0.8Mn0.2 (RE = Pr, Sm and Nd; x = 0, 0.01) alloys. Int. J. Hydrog. Energy 43, 19091–19101 (2018)

    CAS  Google Scholar 

  51. C. Gosselin, D. Santos, J. Huot, First hydrogenation enhancement in TiFe alloys for hydrogen storage. J. Phys. D Appl. Phys. 50, 375303 (2017)

    Google Scholar 

  52. P. Jain, C. Gosselin, J. Huot, Effect of Zr, Ni and Zr 7 Ni 10 alloy on hydrogen storage characteristics of TiFe alloy. Int. J. Hydrog. Energy 40, 16921–16927 (2015)

    CAS  Google Scholar 

  53. S. Kumar, G. Tiwari, S. Sonak, U. Jain, N. Krishnamurthy, High performance FeTi–3.1 mass% V alloy for on board hydrogen storage solution. Energy. 75, 520–524 (2014)

    CAS  Google Scholar 

  54. S.-M. Lee, T.-P. Perng, Effect of the second phase on the initiation of hydrogenation of TiFe1−xMx (M = Cr, Mn) alloys. Int. J. Hydrog. Energy 19, 259–263 (1994)

    CAS  Google Scholar 

  55. R. NaotoYasuda, S. Wakabayashi, N. Sasaki, T. Okinaka, Akiyama, Self-ignition combustion synthesis of TiFe1−xMnx hydrogen storage alloy. Int. J. Hydrog. Energy 34, 9122–9127 (2009)

    CAS  Google Scholar 

  56. H. Shang, Y. Zhang, Y. Li, Y. Qi, S. Guo, D. Zhao, Effects of adding over-stoichiometrical Ti and substituting Fe with Mn partly on structure and hydrogen storage performances of TiFe alloy. Renew. Energy 135, 1481–1498 (2019)

    CAS  Google Scholar 

  57. P. Jain, C. Gosselin, N. Skryabina, D. Fruchart, J. Huot, Hydrogenation properties of TiFe with Zr7Ni10 alloy as additive. J. Alloys Compd. 636, 375–380 (2015)

    CAS  Google Scholar 

  58. S.M. Lee, T.P. Perng, H.K. Juang, S.Y. Chen, W.Y. Chen, S.E. Hsu, Microstructures and hydrogenation properties of TiFel−xMχ alloys. J. Alloys Compd. 187, 49–57 (1992)

    CAS  Google Scholar 

  59. K. Edalati, M. Matsuo, H. Emami, S. Itano, A. Alhamidi, A. Staykov, D.J. Smith, S.-I. Orimo, E. Akiba, Z. Horita, Impact of severe plastic deformation on microstructure and hydrogen storage of titanium-iron-manganese intermetallics. Scripta Mater. 124, 108–111 (2016)

    CAS  Google Scholar 

  60. L. Lutterotti, S. Matthies, H. Wenk, MAUD: a friendly Java program for material analysis using diffraction, IUCr: Newsletter of the CPD, 21 (1999)

  61. L. Lutterotti, S. Gialanella, X-ray diffraction characterization of heavily deformed metallic specimens. Acta Mater. 46, 101–110 (1998)

    CAS  Google Scholar 

  62. M.A. Rahmaninasab, S. Raygan, H. Abdizadeh, M. Pourabdoli, S.H. Mirghaderi, Properties of activated MgH2+ mischmetal nanostructured composite produced by ball-milling. Mater. Renew. Sustain. Energy 7, 15 (2018)

    Google Scholar 

  63. A.K. Patel, P. Sharma, J. Huot, Effect of annealing on microstructure and hydrogenation properties of TiFe + X wt% Zr (X = 4, 8). Int. J. Hydrog. Energy 43, 6238–6243 (2018)

    CAS  Google Scholar 

  64. P. Lv, M.N. Guzik, S. Sartori, J. Huot, Effect of ball milling and cryomilling on the microstructure and first hydrogenation properties of TiFe + 4wt.% Zr alloy. J. Mater. Res. Technol. 8, 1828–1834 (2019)

    CAS  Google Scholar 

  65. G. Romero, P. Lv, J. Huot, Effect of ball milling on the first hydrogenation of TiFe alloy doped with 4 wt% (Zr + 2Mn) additive. J. Mater. Sci. 53, 13751–13757 (2018)

    CAS  Google Scholar 

  66. S.M. Lee, T.P. Perng, Effect of the second phase on the initiation of hydrogenation of TiFe1−xMx (M = Cr, Mn) alloys. Int. J. Hydrog. Energy 19, 259–263 (1994)

    CAS  Google Scholar 

  67. N. Hanada, T. Ichikawa, S.-I. Orimo, H. Fujii, Correlation between hydrogen storage properties and structural characteristics in mechanically milled magnesium hydride MgH2. J. Alloys Compd. 366, 269–273 (2004)

    CAS  Google Scholar 

  68. M. Avrami, Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 9, 177–184 (1941)

    CAS  Google Scholar 

  69. M. Avrami, Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224 (1940)

    CAS  Google Scholar 

  70. U. Bösenberg, J.W. Kim, D. Gosslar, N. Eigen, T.R. Jensen, J.B. Von Colbe, Y. Zhou, M. Dahms, D. Kim, R. Günther, Role of additives in LiBH4–MgH2 reactive hydride composites for sorption kinetics. Acta Mater. 58, 3381–3389 (2010)

    Google Scholar 

  71. N. Koga, J.M. Criado, Kinetic analyses of solid-state reactions with a particle-size distribution. J. Am. Ceram. Soc. 81, 2901–2909 (1998)

    CAS  Google Scholar 

  72. N. Koga, J. Criado, Influence of the particle size distribution on the CRTA curves for the solid-state reactions of interface shrinkage type. J. Therm. Anal. 49, 1477–1484 (1997)

    CAS  Google Scholar 

  73. J. Carstensen, Stability of solids and solid dosage forms. J. Pharm. Sci. 63, 1–14 (1974)

    CAS  Google Scholar 

  74. J. Crank, The Mathematics Of Diffusion (Oxford University Press, Oxford, 1979)

    Google Scholar 

  75. A. Ginstling, B. Brounshtein, Concerning the diffusion kinetics of reactions in spherical particles. J. Appl. Chem. USSR 23, 1327–1338 (1950)

    CAS  Google Scholar 

  76. Y. Pang, Q. Li, A review on kinetic models and corresponding analysis methods for hydrogen storage materials. Int. J. Hydrog. Energy 41, 18072–18087 (2016)

    CAS  Google Scholar 

  77. J. Lang, M. Eagles, M.S. Conradi, J. Huot, Hydrogenation rate limiting step, diffusion and thermal conductivity in cold rolled magnesium hydride. J. Alloys Compd. 583, 116–120 (2014)

    CAS  Google Scholar 

  78. O. Kircher, M. Fichtner, Hydrogen exchange kinetics in NaAlH 4 catalyzed in different decomposition states. J. Appl. Phys. 95, 7748–7753 (2004)

    CAS  Google Scholar 

  79. J. Huot, M. Tousignant, Hydrogen sorption enhancement in cold-rolled and ball-milled CaNi5. J. Mater. Sci. 52, 11911–11918 (2017)

    CAS  Google Scholar 

  80. M. Tousignant, J. Huot, Hydrogen sorption enhancement in cold rolled LaNi5. J. Alloys Compd. 595, 22–27 (2014)

    CAS  Google Scholar 

  81. S.M. Lee, T.P. Perng, Effects of boron and carbon on the hydrogenation properties of TiFe and Ti1.1Fe. Int. J. Hydrog. Energy 25, 831–836 (2000)

    CAS  Google Scholar 

  82. S.M. Lee, T.P. Perng, Microstructural correlations with the hydrogenation kinetics of FeTi1 + ξ alloys. J. Alloys Compd. 177, 107–118 (1991)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by East China University of Technology (ECUT) for PhD research fund and experimental technology project (DHSY-201919114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The fifth author name Jacques Huot was missed in the original publication, and it has been included in this correction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, P., Liu, Z., Patel, A.K. et al. Influence of Ball Milling, Cold Rolling and Doping (Zr + 2Cr) on Microstructure, First Hydrogenation Properties and Anti-poisoning Ability of TiFe Alloy. Met. Mater. Int. 27, 1346–1357 (2021). https://doi.org/10.1007/s12540-019-00501-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00501-1

Keywords

Navigation