Skip to main content
Log in

Effect of Rolling and Coiling Temperatures on Microstructure and Mechanical Properties of Medium-Carbon Pipeline Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Oil country tubular goods (OCTG) steels with a low yield ratio (yield strength/tensile strength) and excellent impact toughness have recently been demanded to ensure mining performance and safety. From this viewpoint, the optimization of the manufacturing conditions is important because they influence the microstructure and mechanical properties of the steels; in particular, in the case of OCTG steels with carbon contents greater than 0.2 wt%, the finishing mill temperature (FMT) and coiling temperature (CT) strongly affect the microstructure of the final products, which are generally composed of ferrite and pearlite phases. In this study, 0.39C-0.23Si-1.56Mn-0.11Cr steel plates were fabricated under various FMT and CT conditions and their yield strength, tensile strength, and impact energy were investigated. In addition, pipes with diameters of 244 and 508 mm were manufactured via an electric resistance welding method using two of these strips fabricated under two different optimized conditions [(1) FMT = 880 °C and CT = 630 °C and (2) FMT = 800 °C and CT = 690 °C] to analyze the change in mechanical properties induced by the work-hardening effect during the piping process. The results revealed that the FMT and CT are closely related to the volume fraction of the ferrite phase, the grain size and lamellar spacing of the pearlite phase, and the tensile and impact properties of the steel strips; the variations in the microstructure and mechanical properties with the FMT and CT were also discussed in detail.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oil Country Tubular Goods (OCTG) Market in North America - Forecast, 2012-2019 (Micro-Market Moniter, 2014), http://www.micromarketmonitor.com/market/north-america-oil-country-tubular-goods-octg-9739477780.html

  2. M. Katsumi, N. Yutaka, J.F.E. Tech, Rep. 7, 1 (2006)

    Google Scholar 

  3. H. Brauer, H. Löbbe, in Oil and Gas Pipelines, ed. By R.W. Revie (John Wiley & Sons, New Jersey, 2015), p. 203

  4. N. Y. Ghodsi, in Oil and Gas Pipelines, ed. By R.W. Revie (John Wiley & Sons, New Jersey, 2015), p. 37

  5. M. Mitsuya, S. Sakanoue and H. Motohashi, in Proceedings of the ASME 2012 Pressure Vessels and Piping Conference, vol 8 (2012), p. 95

  6. M. Hardy, Proc. Energy Mater. 2014, 673 (2014)

    Google Scholar 

  7. Y. Hu, X. Zuo, R. Li, Z. Zhang, Mater. Res. 15(2), 317 (2012)

    Article  CAS  Google Scholar 

  8. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, Ann. Rev. Mater. Res. 45, 391 (2015)

    Article  CAS  Google Scholar 

  9. X.S. Du, W.B. Cao, C.D. Wang, S.J. Li, J.Y. Zhao, Y.F. Sun, Mater. Sci. Eng. A 642, 181 (2015)

    Article  CAS  Google Scholar 

  10. M.A.M. Bonab, M. Eskandari, J.A. Szpunar, J. Mater. Res. 31, 3390 (2016)

    Article  Google Scholar 

  11. M.A.M. Bonab, H.G. Kucheki, Met. Mater. Int. 25, 1109 (2019)

    Article  Google Scholar 

  12. J. Zhou, D. Horsley, B. Rothwell, in Proceedings of the International Pipeline Conference (2006), p. 899

  13. W. Mohr, in Proceedings of the International Pipeline Conference (2006), p. 899

  14. S. Igi, T. Sakimoto, in Proceedinsg of the 20th International Offshore and Polar Engineering Conference (2010), p. 489

  15. M. Lower, ORNL/TM-2014/106 of US DOE, p. 1 (2014)

  16. A.J. Abdalla, L.R.O. Hein, M.S. Pereira, T.M. Hashimoto, Mater. Sci. Technol. 15, 1167 (1999)

    Article  CAS  Google Scholar 

  17. L. Himmel, K. Goodman, W.L. Haworth, Fundamentals of Dual Phase Steels (AIME, New York, 1981), p. 305

    Google Scholar 

  18. S. Gunduz, Mater. Sci. Eng. A 486, 63 (2008)

    Article  Google Scholar 

  19. R.G. Davies, R.A. Kot, B.L. Bramfitt, Fundamentals of Dual Phase Steels (AIME, New York, 1981), p. 265

    Google Scholar 

  20. S. Gunduz, A. Tosun, Mater. Des. 29, 1914 (2008)

    Article  Google Scholar 

  21. API specification 5CT 9th ed. (American Petroleum Institute, 2012), https://www.api.org/~/media/files/certification/monogram-apiqr/program-updates/5ct-9th-edition-purch-guidelines-r1-20120429.pdf

  22. C.G. Andre, F.G. Caballero, C. Capdevila, L.F. Lvarez, Mater. Charact. 48, 101 (2002)

    Article  Google Scholar 

  23. K.B. Matus, G. Altamirano, A. Salinas, A. Flores, F. Goodwin, Metals 8(9), 674 (2018)

    Article  Google Scholar 

  24. Z. Cui, Ph.D. Thesis, The University of Sheffield (2016)

  25. E.J. Palmiere, C.I. Garcia, A.J. Deardo, Metall. Mater. Trans. A 27, 951 (1996)

    Article  Google Scholar 

  26. S. Vervynckt, K. Verbeken, B. Lopez, J.J. Jonas, Int. Mater. Rev. 57, 187 (2012)

    Article  CAS  Google Scholar 

  27. L. Sun, Ph.D. Thesis, University of Sheffield (2012)

  28. H. Tamotsu, S. Takeaki, O. Hiroo, Tetsu-to-Hagane 65(9), 1425 (1979)

    Article  Google Scholar 

  29. K. Maeda, T. Zhou, H.S. Zurob, Proc. TMS 2014, 927 (2014)

    Google Scholar 

  30. K. Mukherjee, S.S. Hazra, M. Militzer, Metall. Mater. Trans. A 40, 2145 (2009)

    Article  Google Scholar 

  31. F. Boratto, R. Barbosa, S. Yue, J.J. Jonas, Proc. THERMEC 88, 383 (1988)

    Google Scholar 

  32. J. Trzaska, L.A. Dobrazanski, J. Mater. Process. Technol. 192–193, 504 (2007)

    Article  Google Scholar 

  33. J.P. Houin, A. Simon, G. Beck, Trans. Iron Steel Inst. Jpn 21(10), 726 (1981)

    Article  CAS  Google Scholar 

  34. R. Mizuno, H. Matsuda, Y. Funakawa, Y. Tanaka, Tetsu-to-Hagané 96(6), 414 (2010)

    Article  CAS  Google Scholar 

  35. N. Tsuchida, T. Inoue, H. Nakano, T. Okamoto, Mater. Lett. 160, 117 (2015)

    Article  CAS  Google Scholar 

  36. T.L. Russell, D.S. Wood, D.S. Clark, Acta Metall. 9, 1054 (1961)

    Article  CAS  Google Scholar 

  37. R. Song, D. Pong, D. Raabe, J.G. Speer, D.K. Matlock, Mater. Sci. Eng. A 441, 1 (2006)

    Article  Google Scholar 

  38. R. Song, D. Ponge, D. Raabe, Scr. Mater. 52(11), 1075 (2005)

    Article  CAS  Google Scholar 

  39. J.J. Kramer, G.M. Pound, R.F. Mehl, Acta Metall. 48(6), 763 (1958)

    Article  Google Scholar 

  40. A.S. Pandit, Ph.D. Thesis, University of Cambridge (2011)

  41. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  CAS  Google Scholar 

  42. M. Avrami, J. Chem. Phys. 8, 212 (1940)

    Article  CAS  Google Scholar 

  43. M. Avrami, J. Chem. Phys. 9, 177 (1941)

    Article  CAS  Google Scholar 

  44. A.N. Kolmogorov, Izv Acad Nauk SSSR. Ser Mat. 3, 355 (1937)

    Google Scholar 

  45. W.A. Johnson, R.F. Mehl, Trans. AIME 135, 416 (1939)

    Google Scholar 

  46. O. Kwon, K.J. Lee, K.B. Kang, J.K. Lee, P.J. Lee, Y.S. Park, E.K. Ro, K.J. Min, J.D. Lee, K.C. Yoo, J. Korean Inst. Met. Mater. 30(11), 1335 (1992)

    CAS  Google Scholar 

  47. J.M. Hyzak, I.M. Bernstein, Metall. Trans. A 7(8), 1217 (1976)

    Article  Google Scholar 

  48. T. Gladman, I. Mclvor, F. Pickering, J. Iron Steel Inst. 210, 916 (1972)

    CAS  Google Scholar 

  49. V.I. Izotov, V.A. Pozdnyakov, E.V. Lukyanenko, O.Y. Usanova, G.A. Filippov, Phys. Met. Metallogr. 103, 519 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean government (MSIP, South Korea) (Nos. 2017R1A4A1015628 and 2019R1A2C1085272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hyuk Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.L., Bang, S.H., Choi, J.M. et al. Effect of Rolling and Coiling Temperatures on Microstructure and Mechanical Properties of Medium-Carbon Pipeline Steel. Met. Mater. Int. 26, 1757–1765 (2020). https://doi.org/10.1007/s12540-019-00500-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00500-2

Keywords

Navigation