Skip to main content
Log in

Modeling of Hydrogen Diffusion Towards a NiTi Arch Wire Under Cyclic Loading

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

NiTi shape memory alloys belong to a class of metals with specific properties like corrosion resistance and biochemical compatibilities. These characteristics allow their use in a lot of medical fields, especially as arch wires in orthodontic applications. A significant alteration of the superelasticity of orthodontic arch wires can be notified after a few months of use in the oral cavity. This behavior is due to the presence of hydrogen. The objective of this work is to develop a constitutive model, which describes the effect of the degradations of the mechanical behavior of NiTi shape memory alloys caused by cyclic loading and hydrogen diffusion. To experimentally predict such effects, orthodontic specimens are charged by hydrogen in a 0.9% NaCl aqueous solution at room temperature with a current density of 10 A/m2 for 2 h, 3 h, 4 h and 6 h and are aged for 7 days in air. The obtained curves display an increase in the critical stress at the beginning and end of the martensite transformation and a decrease in the dissipated energy compared by the curve obtained by a non-charged wire. The developed model is implemented in ABAQUS software through the UMAT and UMATHT subroutines. Finally, the numerical simulation, based on the model proposed in our work, shows a good concordance with the experimental data.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Bellini, J. Moyano, J. Gil, A. Puigdollers, Comparison of the superelasticity of different nickel–titanium orthodontic archwires and the loss of their properties by heat treatment. J. Mater. Sci. Mater. Med. 27, 158 (2016)

    Article  Google Scholar 

  2. F. Gamaoun, I. Skhiri, T. Bouraoui, T. Ben Zineb, Hydrogen effect on the austenite-martensite transformation of the cycled Ni–Ti alloy. J. Intell. Mater. Syst. Struct. 25(8), 980–988 (2014)

    Article  CAS  Google Scholar 

  3. F. Gamaoun, M. Ltaief, T. Bouraoui, T. Ben Zineb, Effect of hydrogen on the tensile strength of aged Ni–Ti superelastic alloy. J. Intell. Mater. Syst. Struct. 22(17), 2053–2059 (2011)

    Article  CAS  Google Scholar 

  4. K. Yokoyama, K. Kaneko, T. Ogawa, K. Moriyama, K. Asaoka, J. Sakai, Hydrogen embrittlement of work-hardened Ni–Ti alloy in fluoride solutions. Biomaterials 26(1), 101–108 (2005)

    Article  CAS  Google Scholar 

  5. J. Sheriff, A.R. Pelton, L.A. Pruitt, Hydrogen effects on NITINOL fatigue, in Proceedings of the International Conference on Shape Memory and Superelastic Technologies (2004), pp. 111–116

  6. M. Tomita, K. Asaoka, Hydrogen thermal desorption behavior of Ni–Ti superelastic alloy subjected to tensile deformation after hydrogen charging. Mater. Sci. Eng. A 476, 308–315 (2008)

    Article  Google Scholar 

  7. F. Gamaoun, T. Hassine, Ageing effect and rate dependency of a NiTi shape memory alloy after hydrogen charging. J. Alloys Compd. 615(S1), S680–S683 (2015)

    Google Scholar 

  8. K. Yokoyama, T. Ogawa, K. Takashima, K. Asaoka, J. Sakai, Hydrogen embrittlement of Ni–Ti superelastic alloy aged at room temperature after hydrogen charging. Mater. Sci. Eng. A 466(1–2), 106–113 (2007)

    Article  Google Scholar 

  9. S. Jothi, T.N. Croft, S.G.R. Brown, Multiscale multiphysics model for hydrogen embrittlement in polycrystalline nickel. J. Alloys Compd. 645(S1), S500–S504 (2015)

    Article  CAS  Google Scholar 

  10. D.N. Ilin, N. Saintier, J.M. Olive, R. Abgrall, I. Aubert, Simulation of hydrogen diffusion affected by stress–strain heterogeneity in polycrystalline stainless steel. Int. J. Hydrogen Energy 39(5), 2418–2422 (2014)

    Article  CAS  Google Scholar 

  11. H. Abdolvand, Progressive modelling and experimentation of hydrogen diffusion and precipitation in anisotropic polycrystals. Int. J. Plast. 116, 39–61 (2019)

    Article  CAS  Google Scholar 

  12. A. Lachiguer, C. Bouby, F. Gamaoun, T. Bouraoui, T. Ben Zineb, Modeling of hydrogen effect on the superelastic behavior of Ni–Ti shape memory alloy wires. Smart Mater. Struct. 25(11), 1–11 (2016)

    Article  Google Scholar 

  13. Y. Chemisky, A. Duval, E. Patoor, T. Ben Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation. Mech. Mater. 43(7), 361–376 (2011)

    Article  Google Scholar 

  14. M.A. Qidwai, D.C. Lagoudas, Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms. Int. J. Numer. Methods Eng. 47(6), 1123–1168 (2000)

    Article  Google Scholar 

  15. M.E. Gurtin, E. Fried, L. Anand, Digression: The Thermodynamic Laws in the Presence of Species Transport, in The Mechanics and Thermodynamics of Continua (Cambridge University Press, Cambridge, 2010), pp. 371–373

  16. W.E. Letaief, T. Hassine, F. Gamaoun, A coupled model between hydrogen diffusion and mechanical behavior of superelastic NiTi alloys. Smart Mater. Struct. 26(7), 75001 (2017)

    Article  Google Scholar 

  17. D.C. Lagoudas, P.B. Entchev, Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense SMAs. Mech. Mater. 36(9), 865–892 (2004)

    Article  Google Scholar 

  18. Q. Zhao, M. Yang, L. Ma, T. Yu, L. Ma, Microstructure and internal friction of Ni–Ti alloys absorbing hydrogen. Mater. Sci. Technol. 31(3), 332–336 (2015)

    Article  CAS  Google Scholar 

  19. K. Yokoyama, Y. Hirata, T. Inaba, K. Mutoh, J. Sakai, Inhibition of localized corrosion of Ni–Ti superelastic alloy in NaCl solution by hydrogen charging. J. Alloys Compd. 639, 365–372 (2015)

    Article  CAS  Google Scholar 

  20. R. Sarraj, T. Hassine, F. Gamaoun, Mechanical behavior of NiTi arc wires under pseudoelastic cycling and cathodically hydrogen charging. Mater. Res. Express 5(1), 15704 (2018)

    Article  Google Scholar 

  21. K. Yokoyama, K. Hamada, K. Moriyama, K. Asaoka, Degradation and fracture of Ni–Ti superelastic wire in an oral cavity. Biomaterials 22(16), 2257–2262 (2001)

    Article  CAS  Google Scholar 

  22. K. Yokoyama, S. Watabe, K. Hamada, J. Sakai, K. Asaoka, M. Nagumo, Susceptibility to delayed fracture of Ni–Ti superelastic alloy. Mater. Sci. Eng. A 341(1–2), 91–97 (2003)

    Article  Google Scholar 

  23. F. Gamaoun, T. Hassine, T. Bouraoui, Strain rate response of a Ni–Ti shape memory alloy after hydrogen charging. Philos. Mag. Lett. 94(1), 30–36 (2014)

    Article  CAS  Google Scholar 

  24. S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti–Ni alloys. Metall. Trans. A 17(1), 115–120 (1986)

    Article  Google Scholar 

  25. R. Sarraj, W.E. Letaief, T. Hassine, F. Gamaoun, Modeling of rate dependency of mechanical behavior of superelastic NiTi alloy under cyclic loading. Int. J. Adv. Manuf. Technol. 100, 2715 (2018)

    Article  Google Scholar 

  26. W.E. Letaief, A. Fathallah, T. Hassine, F. Gamaoun, Finite element analysis of hydrogen effects on superelastic NiTi shape memory alloys: orthodontic application. J. Intell. Mater. Syst. Struct. 29(16), 3188–3198 (2018)

    Article  Google Scholar 

  27. B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  Google Scholar 

  28. R. Schmidt, M. Schlereth, H. Wipf, W. Assmus, M. Müllner, Solubility and diffusion coefficient of hydrogen in the shape-memory alloy NiTi. Z. Phys. Chemie 164(Part_1), 803–808 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number (R.G.P.1/69/40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riheme Sarraj.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarraj, R., Letaief, W.E., Hassine, T. et al. Modeling of Hydrogen Diffusion Towards a NiTi Arch Wire Under Cyclic Loading. Met. Mater. Int. 27, 413–424 (2021). https://doi.org/10.1007/s12540-019-00425-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00425-w

Keywords

Navigation