Skip to main content
Log in

Influences of carbon and silicon on blister formation in scale surface during high temperature oxidation of carbon steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The in-situ blistering phenomena of the scale ‘surface’ was investigated on three carbon steels with respect to carbon and silicon concentrations, such as 0.05 wt%C, 0.2 wt%C, and 0.2 wt%C-0.2 wt%Si. The oxidation and blistering kinetics and blister area fraction during high temperature oxidation were analyzed. The average thickness of the surface scale by oxidation during isothermal holding from 800 to 1200 °C in dry air was observed to decrease when the amount of carbon increased and/or when Si was inserted additionally. Thus, the blistering behavior depended primarily on a change in oxidation temperature (T ox ) as well as amounts of carbon and silicon in the matrix. It is also revealed that such blister formation would be triggered by growth of internal stress and active generations of CO and/or CO2 gases at the interface between the scale and matrix since carbon would result in an increase in the blister formation by generating CO and/or CO2 gas. In addition, silicon might play an important role in preventing the blister formation at T ox below 900 °C by reducing the thickness of the surface scale whilst silicon might enhance the blister formation by means of the appreciable micro-void formation in the scale layer at T ox higher 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Oike, J. Sato, K. Minami, K. Yoshitake, and S. Yamanaka, ISIJ Int. 32, 1211 (1992).

    Article  Google Scholar 

  2. C. S. Li, J. Z. Xu, X. M. He, X. H. Liu, and G. D. Wang, J. Mater. Process. Tech. 116, 201 (2001).

    Article  Google Scholar 

  3. K. Min, K. Kim, S. K. Kim, D.-J. Lee, Met. Mater. Int. 18, 341 (2012).

    Article  Google Scholar 

  4. H. Okada, T. Fukagawa, H. Ishihara, A. Okamoto, M. Azuma, and Y. Matsuda, ISIJ Int. 35, 886 (1995).

    Article  Google Scholar 

  5. H. Utsunomiya, K. Hara, R. Matsumoto, and A. Azushima, CIRP Ann.-Manuf. Techn. 63, 261 (2014).

    Article  Google Scholar 

  6. H. Seki, T. Hiruta, M. Yamashita, T. Imae, K. Tominaga, and M. Koide, CAMP ISIJ 9, 972 (1996).

    Google Scholar 

  7. R. Rolls, Metallurgie 7, 53 (1967).

    Google Scholar 

  8. T. Kizu, Y. Nagataki, T. Inazumi, and Y. Hosoya, ISIJ Int. 41, 1494 (2001).

    Article  Google Scholar 

  9. F. Matsuno, T. Iron Steel. I. Jpn. 20, 413 (1980).

    Google Scholar 

  10. Y. Kondo, H. Tanei, K. Ushioda, and M. Maeda, ISIJ Int. 52, 2254 (2012).

    Article  Google Scholar 

  11. Y. Kondo, H. Tanei, N. Suzuki, K. Ushioda, and M. Maeda, ISIJ Int. 51, 1696 (2011).

    Article  Google Scholar 

  12. Y. Kondo, H. Tanei, K. Ushioda, M. Maeda, and Y. Abe, ISIJ Int. 52, 1644 (2012).

    Article  Google Scholar 

  13. R. Y. Chen, Oxi. Met. 59, 433 (2003).

    Article  Google Scholar 

  14. M. Krzyzanowski, J. H. Beynon, and C. J. Farrugia, Oxide Scale Behavior in High Temperature Metal Processing, pp. 29, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2010).

    Book  Google Scholar 

  15. I. Svedung and N. G. Vannerburg, Corros. Sci. 14, 391 (1974).

    Article  Google Scholar 

  16. A. A. Mouayd, A. Koltsov, E. Sutter, and B. Tribollet, Mater. Chem. Phys. 143, 996 (2014).

    Article  Google Scholar 

  17. N. B. Pilling and R. E. Bedworth, J. I. Met. 29, 529 (1923).

    Google Scholar 

  18. A. S. Khanna, Introduction to High Temperature Oxidation and Corrosion, p. 103, ASM International, USA (2002).

    Google Scholar 

  19. X. Cheng, Z. Jiang, D. Wei, J. Zhao, B. J. Monaghan, R. J. Longbottom, et al. Met. Mater. Int. 21, 251 (2015).

    Article  Google Scholar 

  20. D. B. Lee and P. Yadav, Korean J. Met. Mater. 53, 859 (2015).

    Article  Google Scholar 

  21. G. E. Kim, Y. D. Kim, S. Noh, and T. K. Kim, Korean J. Met. Mater. 54, 533 (2016).

    Article  Google Scholar 

  22. C. S. Giggins, B. H. Kear, F. S. Pettit, and J. K. Tien, Metall. Mater. Trans. A 5, 1685 (1974).

    Google Scholar 

  23. J. K. Tien and F. S. Pettit, Metall. Mater. Trans. A 3, 1587 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Mo Koo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DJ., Lee, JS. & Koo, YM. Influences of carbon and silicon on blister formation in scale surface during high temperature oxidation of carbon steels. Met. Mater. Int. 23, 715–719 (2017). https://doi.org/10.1007/s12540-017-6741-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6741-6

Keywords

Navigation