Skip to main content
Log in

Analysis of self-propagating intermetallic reaction in nanoscale multilayers of binary metals

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Nanoscale multilayers of two different metals could exhibit super-fast intermetallic reaction wave that accompanies high level of exothermic heat release, while additional advantage is a very small ignition delay. They could be a promising candidate for the core technology in realizing micron-sized initiation device for explosives detonation or propellants ignition in various defense and civilian applications. This numerical investigation focuses on the numerical modeling and computations of the ignition and self-propagating reaction behaviors in nanoscale intermetallic multilayer structures made of alternating binary metal layers of boron and titanium. Due to thin film nature of metallic multilayers, intermetallic reaction propagation across the repeating bimetallic multilayers is approximated to the one-dimensional transient model of thermal diffusion and atomic species diffusion, and the intermetallic reaction between two metal species is assumed to follow Arrhenius dependence on temperature. The computational results show the details of ignition and propagation characteristics of intermetallic reaction wave by evaluating and discussing the effects of key parameters, such as multilayer thickness, excess of one metal species, and presence of atomic premixing at interface of boron and titanium layers, on ignition delay and propagation speed of self-sustaining reaction wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Dreizin, Prog. Energ. Combust. 35, 141 (2009).

    Article  Google Scholar 

  2. R. W. Armstrong, B. Baschung, D. W. Booth, and M. Samirant, Nano Lett. 3, 253 (2003).

    Article  Google Scholar 

  3. R. A. Yetter, G. A. Risha, and S. F. Son, P. Combust. Inst. 32, 1819 (2009).

    Article  Google Scholar 

  4. B. S. Bockmon, M. L. Pantoya, S. F. Son, B. W. Asay, and J. T. Mang, J. Appl. Phys. 98, 064903 (2005).

    Article  Google Scholar 

  5. D. E. Wilson and K. Kim, Proc. 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, p. AIAA 2003-4563, AIAA, Alabama, USA (2003).

    Google Scholar 

  6. S. F. Son, B. W. Asay, T. J. Foley, R. A. Yetter, M. H. Wu, and G. A. Risha, J. Propul. Power 23, 715 (2007).

    Article  Google Scholar 

  7. A. J. Gavens, D. Van Heerden, A. B. Mann, M. E. Reiss, and T. P. Weihs, J. Appl. Phys. 87, 1255 (2002).

    Article  Google Scholar 

  8. J.-C. Gachon, A. S. Rogachev, H. E. Grigoryan, E. V. Illarionova, J.-J. Kuntz, D. Yu. Kovalev, et al. Acta Mater. 53, 1225 (2005).

    Article  Google Scholar 

  9. N. A. Manesh, S. Basu, and R. Kumar, Combust. Flame 157, 476 (2010).

    Article  Google Scholar 

  10. T. A. Baginski, S. L. Taliaferro, and W. D. Fahey, J. Propul. Power 17, 184 (2001).

    Article  Google Scholar 

  11. S. Tanaka, K. Kondo, H. Habu, A. Itoh, M. Watanabe, K. Hori, et al. Sensor. Actuat. A 144, 361 (2008).

    Article  Google Scholar 

  12. C. J. Morris, B. Mary, E. Zakar, S. Barron, G. Fritz, O. Knio, et al. J. Phys. Chem. Solids 71, 84 (2010).

    Article  Google Scholar 

  13. C. Rossi, K. Zhang, D. Esteve, P. Alphonse, P. Tailhades, and C. Vahlas, J. Microelectromech. S. 16, 919 (2007).

    Article  Google Scholar 

  14. X. Qui, R. Tang, R. Liu, H. Huang, S. Guo, and H. Yu, J. Mater. Sci.-Mater. El. 23, 2140 (2012).

    Article  Google Scholar 

  15. Kim, K. Proc. First Thermal and Fluids Engineering Summer Conference, New York, USA (2015).

    Google Scholar 

  16. J. Wang, E. Besnoin, A. Duckham, S. J. Spey, M. E. Reiss, T. P. Weihs, et al. J. Appl. Phys. 95, 248 (2004).

    Article  Google Scholar 

  17. S. Jayaraman, A. B. Mann, M. Reiss, T. P. Weihs, and O. M. Knio, Combust. Flame 124, 178 (2001).

    Article  Google Scholar 

  18. E. Besnoin, S. Cerutti, O. M. Knio, and T. P. Weihs, J. Appl. Phys. 92, 5474 (2002).

    Article  Google Scholar 

  19. M. Salloum and O. M. Knio, Combust. Flame 157, 288 (2010).

    Article  Google Scholar 

  20. M. Salloum and O. M. Knio, Combust. Flame 157, 436 (2010).

    Article  Google Scholar 

  21. K. Kim, Proc. 3rd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, Page, National Taipei University of Technology, Taipei, Taiwan (2015).

    Google Scholar 

  22. B. J. McBride, S. Gordon, and M. A. Reno, NASA Technical Paper TP-3287-REV 1, pp.18–19, National Aeronautics and Space Administration, USA (2001).

    Google Scholar 

  23. C. Y. Ho, R. W. Howell, and P. E. Liley, J. Phys. Chem. Ref. Data. 1, 279 (1972).

    Article  Google Scholar 

  24. M. M. Pacheco, Ph.D. Thesis, pp.61–79, Delft University of Technology, Delft (2007).

    Google Scholar 

  25. N. M. Tikekar, Ph.D. Thesis, p. 83, University of Utah, Salt Lake City (2007).

    Google Scholar 

  26. A. P. Hardt, Technical Report AFATL-TR-71-87, pp.61–79, U. S. Air Force Armament Laboratory, USA (1971).

    Google Scholar 

  27. D. P. Adams, Thin Solid Films 576, 98 (2015).

    Article  Google Scholar 

  28. T. A. Baginski and D. Fahey, Proc. 45th NDIA Annual Fuze Conference, Long Beach, CA, USA (2001).

    Google Scholar 

  29. R. Armstrong and M. Koszykowski, Combustion and Plasma Synthesis of High-Temperature Materials (eds. Z. A. Munir and J. B. Holt), p. 88, VCH Publishers, New York, USA (1990).

  30. D.-C. Tsai, B.-H. Kuo, Z.-C. Chang, E.-C. Chen, and F.-S. Shieu, Met. Mater. Int. 23, 163 (2017).

    Article  Google Scholar 

  31. J.-H. Jang, H.-K. Park, K.-D. Woo, H.-E. Nam, and I.-H. Oh, Korean J. Met. Mater. 54, 22 (2016).

    Article  Google Scholar 

  32. H.-J. Moon, Y.-H. Song, J.-H. Oh, S.-B. Heo, and D. Kim, Korean J. Met. Mater. 54, 450 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungjin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K. Analysis of self-propagating intermetallic reaction in nanoscale multilayers of binary metals. Met. Mater. Int. 23, 326–335 (2017). https://doi.org/10.1007/s12540-017-6379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6379-4

Keywords

Navigation