Skip to main content
Log in

Strain-rate sensitivity of powder metallurgy superalloys associated with steady-state DRX during hot compression process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Strain-rate sensitivity (SRS) is an important parameter to describe the thermodynamic behavior in plastic deformation process. In this research, the variation of SRS associated with steady-state DRX in P/M superalloys was quantitatively investigated. Based on the theoretical analysis and microstructural observation of the alloy after deformation, the SRS coefficient was employed to identify the deformation mechanism of the alloy. Meanwhile, the corresponding relationship between SRS coefficient m, stress exponent n and deformation mechanism was revealed. The stress exponent n in the Arrhenius constitutive model of P/M superalloys was calculated. In addition, it is found there is a relatively stable stress exponent range (n = 4-6), indicating that dislocation evolution played as the major hot deformation mechanism for P/M FGH4096 superalloy. Furthermore, the Bergstrom model and Senkov model were used and combined together to estimate the SRS coefficient in the steady-state DRX and the m value maintains at 0.2-0.22, which are consistent with the microstructural evolution during hot deformation process. The SRS coefficient distribution map and power dissipation efficiency distribution map were finally constructed associated with the microstructural evolution during hot deformation, which can be used to optimize the processing parameters of the superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Wang, Y. Liu, and J. T. Wang, Mat. Sci. Eng. A 635, 86 (2015).

    Article  Google Scholar 

  2. J. E. Jin and Y. K. Lee, Acta Mater. 60, 1680 (2012).

    Article  Google Scholar 

  3. H. K. Yang, Z. J. Zhang, F. Y. Dong, Q. Q. Duan, and Z. F. Zhang, Mat. Sci. Eng. A 607, 551 (2014).

    Article  Google Scholar 

  4. S. Curtze and V. T. Kuokkala, Acta Mater. 58, 5129 (2010).

    Article  Google Scholar 

  5. A. C. Magee and L. Ladani, Mat. Sci. Eng. A 582, 276 (2013).

    Article  Google Scholar 

  6. L. Chen, Mat. Sci. Eng. A 527, 1120 (2010).

    Article  Google Scholar 

  7. Y. Wang, W. Z. Shao, L. Zhen, L. Yang, and X. M. Zhang, Mat. Sci. Eng. A 497, 479 (2008).

    Article  Google Scholar 

  8. E. Karimi, A. Zarei-Hanzaki, M. H. Pishbin, H. R. Abedi, and P. Changizian, Mater. Design 49, 173 (2013).

    Article  Google Scholar 

  9. J. H. Bianchi and L. P. Karjalainen, J. Mater. Process. Tech. 160, 267 (2005).

    Article  Google Scholar 

  10. Y. Ning, Z. Yao, H. Li, H. Guo, Y. Tao, and Y. Zhang, Mat. Sci. Eng. A 527, 961 (2010).

    Article  Google Scholar 

  11. Y. Bergstrom, Mat. Sci. Eng. A 5, 193 (1970).

    Article  Google Scholar 

  12. O. N. Senkov, J. J. Jonas, and F. H. Froes, Mat. Sci. Eng. A 255, 49 (1998).

    Article  Google Scholar 

  13. Y. C. Lin, X. M. Chen, and D. X. Wen, Comp. Mater. Sci. 83, 282 (2014).

    Article  Google Scholar 

  14. J. S. Kim, J. H. Kim, Y. T. Lee, C. G. Park, and C. S. Lee, Mat. Sci. Eng. A 263, 272 (1999).

    Article  Google Scholar 

  15. R. Korla and A. H. Chokshi, Scripta Mater. 63, 913 (2010).

    Article  Google Scholar 

  16. A. K. Mukherjee, J. E. Bird, and J. E. Dorn, T. Am. Soc. Metal. 62, 155 (1969).

    Google Scholar 

  17. T. G. Langdon, Philos. Mag. 22, 689 (1970).

    Article  Google Scholar 

  18. M. F. Ashby and R. A. Verrall, Acta Metall. 21, 149 (1973).

    Article  Google Scholar 

  19. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  20. R. L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  21. R. C. Picu, Acta Mater. 52, 3447 (2004).

    Article  Google Scholar 

  22. A. Nakatani, Procedia. 10, 1047 (2011).

    Article  Google Scholar 

  23. H. J. McQueen and J. J. Jonas, Plastic Deformation of Metals, p. 393, Academic Press, New York, USA (1975).

    Book  Google Scholar 

  24. C. M. Sellars, Phil. T. R. Soc. A 288, 147 (1978).

    Article  Google Scholar 

  25. D. Turnbull, JOM-J. Met. 3, 661 (1951).

    Google Scholar 

  26. Y. V. R. K. Prasad and K. P. Rao, Philos. Mag. 84, 3039 (2004).

    Article  Google Scholar 

  27. C. R. Hutchinson, H. S. Zurob, S. W. Sinclair, and Y. Brechet, Scripta Mater. 59, 635 (2008).

    Article  Google Scholar 

  28. Y. Estrin and H. Mecking, Acta Metall. 32, 57 (1984).

    Article  Google Scholar 

  29. G. E. Dieter, Mechanical Metallurgy, pp. 145–150, McGraw-Hill, New York, USA (1988).

    Google Scholar 

  30. E. I. Galindo-Nava and P. E. J. Rivera-Diaz-del-Castillo, Acta Mater. 60, 4370 (2012).

    Article  Google Scholar 

  31. A. Momeni, G. R. Ebrahimi, M. Jahazi, and P. Bocher, J. Alloy. Compd. 587, 199 (2014).

    Article  Google Scholar 

  32. Y. C. Lin, J. Deng, Y. Q. Jiang, D. X. Wen, and G. Liu, Mater. Design 55, 949 (2014).

    Article  Google Scholar 

  33. K. Wang, M.Q. Li, J. Luo, and C. Li, Mat. Sci. Eng. A 528, 4723 (2011).

    Article  Google Scholar 

  34. C. M. Sellars and W. J. M. Tegart, Mem. Etud. Sci. Rev. Met. 63, 731 (1966).

    Google Scholar 

  35. S. Venugopal, S.L. Mannan, and Y. V. R. K. Prasad, Mat. Sci. Eng. A 117, 143 (1994).

    Article  Google Scholar 

  36. H. B. Zhang, K. F. Zhang, Z. Lu, C. H. Zhao, and X. L. Yang, Mat. Sci. Eng. A 604, 1 (2014).

    Article  Google Scholar 

  37. Y. Wang, W. Z. Shao, L. Zhen, and B. Y. Zhang, Mat. Sci. Eng. A 528, 3218 (2011).

    Article  Google Scholar 

  38. W. D. Zeng, Y. G. Zhou, J. Zhou, H. Q. Yu, and X. M. Zhang, Rare Metal. Mat. Eng. 35, 673 (2006).

    Google Scholar 

  39. Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, and J. T. Morgan, Metall. Trans. A 15, 1883 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Y.Q., Xie, B.C., Zhou, C. et al. Strain-rate sensitivity of powder metallurgy superalloys associated with steady-state DRX during hot compression process. Met. Mater. Int. 23, 350–358 (2017). https://doi.org/10.1007/s12540-017-6313-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-017-6313-9

Keywords

Navigation