Skip to main content
Log in

Microwave heating characteristics of magnetite ore

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The heating characteristics of magnetite ore under microwave irradiation were investigated as a function of incident microwave power, particle size, and magnetite ore mass. The results showed that the heating rate of magnetite ore is highly dependent on microwave power and magnetite ore mass. The maximum heating rate was obtained at a microwave irradiation power of 1.70 kW with a mass of 25 g and particle size between 53-75 µm. The volumetric heating rate of magnetite ore was investigated by measuring the temperature at different depths during microwave irradiation. Microwave irradiation resulted in modification of the microstructure of the magnetite ore, but new phases such as FeO or Fe2O3 were not formed. In addition, the crystal size decreased from 115 nm to 63 nm after microwave irradiation up to 1573 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Nations, Framework Convention on Climate Change, Adoption of the Paris Agreement, http://www.cop21.gouv.fr/en (accessed May 30, 2016).

  2. Republic of Korea, Intended Nationally Determined Contribution, http://www4.unfcc.int/submission/INDC (accessed May 30, 2016).

  3. Greenhouse Gas Inventory & Research Center of Korea, GHG Statistics of Korea, http://www.gir.go.kr/ (accessed May 30, 2016).

  4. Ulcos, Hisarna Smelter Technology, http://www.ulcos.org/ en/research/isarna.php (accessed May 30, 2016).

  5. Course 50, Technologies to Reduce CO2 Emissions, http:// www.jisf.or.jp/course50/technology01/(accessed May 30, 2016).

  6. J. Cheng, R. Roy, and D. Agrawal, Mat. Res. Innovat. 5, 170 (2002).

    Article  Google Scholar 

  7. M. Hotta, M. Hayashi, A. Nishikata, and K. Nagatha, ISIJ Int. 49, 1443 (2009).

    Article  Google Scholar 

  8. N. Standish, H. Worner, and G. Gupta, J. Microw. Power Electromagn. Energy 25, 75 (1990).

    Article  Google Scholar 

  9. N. Standish and H. Worner, J. Microw. Power Electromagn. Energy 25, 177 (1990).

    Article  Google Scholar 

  10. N. Standish and Pramusanto, ISIJ Int. 31, 11 (1991).

    Article  Google Scholar 

  11. N. Standish and W. Huang, ISIJ Int. 31, 241 (1991).

    Article  Google Scholar 

  12. K. Ishizaki, K. Nagata, and T. Hayashi, ISIJ Int. 47, 817 (2007).

    Article  Google Scholar 

  13. K. Kashimura, K. Nagata, and M. Sato, Mater. Trans. 51, 1847 (2010).

    Article  Google Scholar 

  14. K. Hara and M. Hayashi, J. Microw. Power Electromagn. Energy 45, 137 (2011).

    Article  Google Scholar 

  15. K. Kashimura, M. Sato, M. Hotta, D. K. Agrawal, K. Nagata, N. Shinohara, et al., Mat. Sci. Eng. A 556, 979 (2012).

    Article  Google Scholar 

  16. E. R. Castro, M. B. Mourao, and L. A. Jermolovicius, Steel Res. Int. 83, 131 (2012).

    Article  Google Scholar 

  17. N. Sabelstrom, M. Hayashi, Y. Yokoyama, T. Watanabe, and K. Nagata, Steel Res. Int. 84, 975 (2013).

    Google Scholar 

  18. K. Morita, M. Guo, Y. Miyazaki, and N. Sano, ISIJ Int. 41, 716 (2001).

    Article  Google Scholar 

  19. N. Standish, H. K. Worner, and D. Y. Obuchowski, Powder Technol. 66, 225 (1991).

    Article  Google Scholar 

  20. M. Hayashi, Y. Yokoyama, and K. Nagata, J. Microw. Power Electromagn. Energy 44, 198 (2010).

    Article  Google Scholar 

  21. N. Yoshikawa, Z. Cao, D. Louzguin, G. Xie, and S. Taniguchi, J. Mater. Res. 24, 1741 (2009).

    Article  Google Scholar 

  22. N. Yoshikawa, G. Xie, Z. Cao, and D. V. Louzguine, J. Eur. Ceram. Sco. 32, 419 (2012).

    Article  Google Scholar 

  23. T. Kato, K. Kobayashi, N. Yoshikawa, and S. Taniguchi, J. Microw. Power Electromagn. Energy 45, 79 (2011).

    Article  Google Scholar 

  24. E. Kim, S. Cho, and J. Lee, Met. Mater. Int. 15, 1033 (2009).

    Article  Google Scholar 

  25. T. Kim and J. Lee, Mater. Trans. 52, 2233 (2011).

    Article  Google Scholar 

  26. J. B. Salsman, R. L. Williamson, W. K. Tolley, and D. A. Rice, Miner. Eng. 9, 43 (1996).

    Article  Google Scholar 

  27. K. I. Rybakov, V. E. Semenov, S. V. Eremeev, I. V. Plotnikov, and Y. V. Bykov, J. Appl. Phys. 99, 023506 (2006).

    Article  Google Scholar 

  28. J. B. Ahn, D. Kim, S. Y. Yoon, and C. Choi, Korean J. Met. Mater. 54, 275 (2016).

    Article  Google Scholar 

  29. Y. Noh and O. Song, Korean J. Met. Mater. 53, 214 (2015).

    Article  Google Scholar 

  30. S. An, M. Shin, K. J. Sim, and J. Lee, Met. Mater. Int. 20, 351 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaehong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajavaram, R., Lee, J., Oh, J.S. et al. Microwave heating characteristics of magnetite ore. Met. Mater. Int. 22, 1116–1120 (2016). https://doi.org/10.1007/s12540-016-6045-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-6045-2

Keywords

Navigation