Skip to main content
Log in

Corrosion and time dependent passivation of Al 5052 in the presence of H2O2

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Corrosion and time–dependent oxide film growth on AA5052 Aluminum alloy in 0.25M Na2SO4 solution containing H2O2 was studied using electrochemical impedance spectroscopy, potentiodynamic polarization, chronoamperometric and open circuit potential monitoring. It was found that sequential addition of H2O2 provokes passivation of AA5052 which ultimately thickens the oxide film and brings slower corrosion rates for AA5052. H2O2 facilitates kinetics of oxide film growth on AA 5052 at 25° and 60 °C which is indicative of formation of a thick barrier film that leads to an increment in the charge transfer resistance. Pitting incubation time increases by introduction of H2O2 accompanied by lower pitting and smoother surface morphologies. At short exposure (up to 8 h) to H2O2–containing solution, the inductive response at low frequencies predominantly determined the corrosion mechanism of AA5052. On the other hand, at prolonged exposure times (more than 24 h) to 0.25M Na2SO4+1vol% H2O2 solution, thicker oxide layers resulted in the mixed inductive–Warburg elements in the spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ezuber, A. El-Houd, and F. El-Shawesh, Mater. Design 29, 801 (2008).

    Article  Google Scholar 

  2. M. F. Naeini, M. H. Shariat, and M. Eizadjou, J. Alloy. Compd. 509, 4696 (2011).

    Article  Google Scholar 

  3. B. H. Lee, S. H. Kim, J. H. Park, H. W. Kim, and J. C. Lee, Mater. Sci. Eng. A 657, 115 (2016).

    Article  Google Scholar 

  4. M. Liu and J. Banhart, Mater. Sci. Eng. A 658, 238 (2016).

    Article  Google Scholar 

  5. C. Vargel, Corrosion of Aluminium, p.77, Elsevier, Paris (2004).

    Google Scholar 

  6. A. Hiroki and J. A. LaVerne, J. Phys. Chem. B 109, 3364 (2005).

    Article  Google Scholar 

  7. W. Moshier, G. Davis, and J. Ahearn, Corros. Sci. 27, 785 (1987).

    Article  Google Scholar 

  8. C. Chao, L. Lin, and D. Macdonald, J. Electrochem. Soc 129, 1874 (1982).

    Article  Google Scholar 

  9. R. Narayanan and S. Seshadri, Corrosion Science 50, 1521 (2008).

    Article  Google Scholar 

  10. B. Krishnamurthy, R. E. White, and H. J. Ploehn, Electrochim. Acta 47, 2505 (2002).

    Article  Google Scholar 

  11. L. Choudhary, W. Wang, and A. Alfantazi, Metall. Mater. Trans A 47, 314 (2016).

    Article  Google Scholar 

  12. T. Balusamy and T. Nishimura, Electrochim. Acta (In Press).

  13. F. Reis, H. De Melo, and I. Costa, Electrochim. Acta 51, 1780 (2006).

    Article  Google Scholar 

  14. S. Gudic, J. Radoševic, and M. Kliškic, Electrochim. Acta 47, 3009 (2002).

    Article  Google Scholar 

  15. M. Metikoš-Hukovic, R. Babic, and Z. Grubac, J. Electrochem. Soc. 156, 435 (2009)

    Article  Google Scholar 

  16. K. Chandra and V. Kain, Eng. Fail. Anal. 34, 387 (2013).

    Article  Google Scholar 

  17. M. B. Hariri, S. G. Shiri, Y. Yaghoubinezhad, and M. M. Rahavard, Mater. Design 50, 620 (2013).

    Article  Google Scholar 

  18. N. Sahu, C.K. Sarangi, B. Dash, B. C. Tripathy, B. K. Satpathy, D. Meyrick, and I. N. Bhattacharya, T. Nonferr. Metal. Soc. 25, 615 (2015).

    Article  Google Scholar 

  19. E. G. Dow, R. R. Bessette, C. Marsh-Orndorff, H. Meunier, J. Vanzee, and M. G. Medeiros, J. Power Sources 65, 207 (1997).

    Article  Google Scholar 

  20. K. L. Elmore, C. M. Mason, and J. D. Hatfield, J. Am. Chem. Soc. 67, 1449 (1945).

    Article  Google Scholar 

  21. T. Nickchi and A. Alfantazi, Electrochim. Acta 58, 743 (2011).

    Article  Google Scholar 

  22. S. M. Li, H. Zhang, and J. Liu, T. Nonferr. Metal. Soc. 17, 318 (2007).

    Article  Google Scholar 

  23. H. S. Kuo and W. T. Tsai, Mater. Chem. Phys. 69, 53 (2001).

    Article  Google Scholar 

  24. M. Trueba and S. P. Trasatti, Mater. Chem. Phys. 121, 523 (2010).

    Article  Google Scholar 

  25. D. B. Williams and C. B. Carter, The Transmission Electron Microscope, pp. 3–22, Springer, USA (2009).

    Book  Google Scholar 

  26. H. Ding and L. H. Hihara, ECS Transactions 3, 237 (2007).

    Article  Google Scholar 

  27. T. Nickchi and A. Alfantazi, Corros. Sci. 52, 4035 (2010).

    Article  Google Scholar 

  28. C. Escrivà-Cerdán, E. Blasco-Tamarit, D. M. García-García, J. García-Antón, and A. Guenbour, Corros. Sci. 56, 114 (2012).

    Article  Google Scholar 

  29. G. Frankel, J. Electrochem. Soc. 145, 2186 (1998).

    Article  Google Scholar 

  30. E. Ura-Binczyk, N. Homazava, A. Ulrich, R. Hauert, M. Lewandowska, K. J. Kurzydlowski, and P. Schmutz, Corros. Sci. 53, 1825 (2011).

    Article  Google Scholar 

  31. M. A. Amin, S. S. A. El Rehim, and A. S. El-Lithy, Corros. Sci. 52, 3099 (2010).

    Article  Google Scholar 

  32. T. H. Nguyen and R. Foley, J. Electrochem. Soc. 126, 1855 (1979).

    Article  Google Scholar 

  33. G. Burstein, C. Liu, and R. Souto, Biomaterials 26, 245 (2005).

    Article  Google Scholar 

  34. L. Wang, B. P. Zhang, and T. Shinohara, Mater. Design 31, 857 (2010).

    Article  Google Scholar 

  35. U. Trdan and J. Grum, Corros. Sci. 59, 324 (2012).

    Article  Google Scholar 

  36. A. Döner, E. Solmaz, M. Ozcan, and G. Kardas, Corros. Sci. 53, 2902 (2011).

    Article  Google Scholar 

  37. G. Baril, C. Blanc, and N. Pébère, J. Electrochem. Soc. 148, 489 (2001).

    Article  Google Scholar 

  38. P. Cabot, J. A. Garrido, E. Pe, A. H. Moreira, P. Sumodjo, and W. Proud, Electrochim. Acta 40, 447 (1995).

    Article  Google Scholar 

  39. B. Hirschorn, M. E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Electrochim. Acta 55, 6218 (2010).

    Article  Google Scholar 

  40. M. Jamesh, S. Kumar, and T. S. Narayanan, Corros. Sci. 53, 645 (2011).

    Article  Google Scholar 

  41. M. Keddam, O. R. Mottos, and H. Takenouti, J. Electrochem. Soc. 128, 257 (1981).

    Article  Google Scholar 

  42. M. Anik and G. Celikten, Corros. Sci. 49, 1878 (2007).

    Article  Google Scholar 

  43. A. Balbo, A. Frignani, V. Grassi, and F. Zucchi, Corros. Sci. 73, 80 (2013).

    Article  Google Scholar 

  44. G. Treacy, G. Wilcox, and M. Richardson, Surf. Coat. Tech. 114, 260 (1999).

    Article  Google Scholar 

  45. D. D. Macdonald, J. Electrochem. Soc. 139, 3434 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhad Batmanghelich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batmanghelich, F., Hariri, M.B., Sharifi-Asl, S. et al. Corrosion and time dependent passivation of Al 5052 in the presence of H2O2 . Met. Mater. Int. 22, 609–620 (2016). https://doi.org/10.1007/s12540-016-5699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-5699-0

Keywords

Navigation