Skip to main content
Log in

Influence of cooling rate on secondary phase precipitation and proeutectoid phase transformation of micro-alloyed steel containing vanadium

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

During continuous casting process of low carbon micro-alloyed steel containing vanadium, the evolution of strand surface microstructure and the precipitation of secondary phase particles (mainly V(C, N)) are significantly influenced by cooling rate. In this paper, influence of cooling rate on the precipitation behavior of proeutectoid α-ferrite at the γ-austenite grain boundary and in the steel matrix are in situ observed and analyzed through high temperature confocal laser scanning microscopy. The relationship between cooling rate and precipitation of V(C, N) from steel continuous casting bloom surface microstructure is further studied by scanning electron microscopy and electron dispersive spectrometer. Relative results have shown the effect of V(C, N) precipitation on α-ferrite phase transformation is mainly revealed in two aspects: (i) Precipitated V(C, N) particles act as inoculant particles to promote proeutectoid ferrite nucleation. (ii) Local carbon concentration along the γ-austenite grain boundaries is decreased with the precipitation of V(C, N), which in turn promotes α-ferrite precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Derda and J. Wiedermann, Arch. Metall. Mater. 57, 303 (2012).

    Google Scholar 

  2. Z. Mohamed, Mater. Sci. Eng. A 326, 255 (2002).

    Article  Google Scholar 

  3. B. Mintz, ISIJ Int. 39, 833 (1999).

    Article  Google Scholar 

  4. M. Bobadilla, J. M. Jolivet, J. Y. Lamant, and M. Larrecq, Mater. Sci. Eng. A 173, 275 (1993).

    Article  Google Scholar 

  5. F. J. Ma, G. H. Wen, P. Tang, X. Yu, J. Y. Li, G. D. Xu, and F. Mei, Ironmak. Steelmak. 37, 73 (2010).

    Article  Google Scholar 

  6. K. R. Carpenter, R. Dippenaar, and C. R. Killmore, Metall. Mater. Trans. A 40, 573 (2009).

    Article  Google Scholar 

  7. B. Mintz, Mater. Sci. Tech. 24, 112 (2008).

    Article  Google Scholar 

  8. F. J. Ma, G. H. Wen, and W. L. Wang, Steel Res. Int. 84, 370 (2013).

    Article  Google Scholar 

  9. J. G. Jung, J. S. Park, J. Y. Kim, and Y. K. Lee, Mater. Sci. Eng. A 528, 5529 (2011).

    Article  Google Scholar 

  10. M. Arribas, B. López, and J. M. Rodriguez-Ibabe, Mater. Sci. Eng. A 485, 383 (2008).

    Article  Google Scholar 

  11. A. A. D. Santos and R. Barbosa, Steel Res. Int. 80, 632 (2009).

    Google Scholar 

  12. H. Ohta, R. Inoue, and H. Suito, ISIJ Int. 48, 294 (2008).

    Article  Google Scholar 

  13. J. Chen, M. Y. Lv, S. Tang, Z. Liu, and G. Wang, Mater. Sci. Eng. A 594, 389 (2014).

    Article  Google Scholar 

  14. J. S. Park, Y. S. Ha, S. J. Lee, and Y. K. Lee, Metall. Mater. Trans. A 40, 560 (2009).

    Article  Google Scholar 

  15. S. S. Xie, J. D. Lee, U. S. Yoon, and C. H. Yim, ISIJ Int. 42, 708 (2002).

    Article  Google Scholar 

  16. W. J. Liu, Metall. Mater. Trans. A 26, 1641 (1995).

    Article  Google Scholar 

  17. V. S. A. Challa, W. H. Zhou, R. D. K. Misra, and R. O’Malley, Mater. Sci. Eng. A 595, 143 (2014).

    Article  Google Scholar 

  18. H. Yin, T. Emi, and H. Shibata, Acta Mater. 47, 1523 (1999).

    Article  Google Scholar 

  19. H. Yin, T. Emi, and H. Shibata, ISIJ Int. 38, 794 (1998).

    Article  Google Scholar 

  20. S. Kimura, K. Nakajima, S. Mizoguchi, and H. Hasegawa, Metall. Mater. Trans. A 33, 427 (2002).

    Article  Google Scholar 

  21. H. Hasegawa, K. Nakajima, and S. Mizoguchi, Tetsu-to-Hagané 87, 433 (2001).

    Google Scholar 

  22. S. Zhao, D. Wei, R. Li, and L. Zhang, Mater. Trans. 55, 1274 (2014).

    Article  Google Scholar 

  23. Z. P. Xiong, A. G. Kostryzhev, N. E. Stanford, and E. V. Pereloma, Mater. Sci. Eng. A 651, 291 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, K., Meng, L., Liu, Q. et al. Influence of cooling rate on secondary phase precipitation and proeutectoid phase transformation of micro-alloyed steel containing vanadium. Met. Mater. Int. 22, 349–355 (2016). https://doi.org/10.1007/s12540-016-2676-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-016-2676-6

Keywords

Navigation