Skip to main content
Log in

Adiabatic shear banding and cracking phenomena occurring during cold-forging simulation tests of plain carbon steel wire rods by using a split Hopkinson’s pressure bar

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Adiabatic shear banding and cracking phenomena occurring during cold forging of plain carbon steel wire rods, whose carbon content was varied from 0.2 to 0.8 wt%, were analyzed by forging simulation test using a split Hopkinson’s pressure bar. The test results indicated that the 0.2C and 0.3C steels were dynamically compressed without surface defects after the fifth hit, whereas a deep crack was formed along the 45° direction in the 0.8C steel. In all the steels, adiabatic shear bands were formed diagonally inside forging-simulated specimens, and grains were extremely elongated within shear bands. The higher the volume fraction of pearlite was, the easier was the adiabatic shear banding. Particularly in the 0.8C steel, the shear band was white-colored and narrow, along which a long crack was formed. After the spheroidization treatment of the 0.8C steel, adiabatic shear bands or cracks were not found during the forging simulation test as the steel was relatively homogeneously deformed, which indicated that the spheroidization effectively prevented the adiabatic shear banding or cracking. The present forging simulation test plausibly evaluated the cold-forging performance by controlling the number and amount of hit, and provided an important idea on whether the spheroidization was needed or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Iwama and I. Nomura, U. S. Patent 5, 362, 338 (1994).

    Google Scholar 

  2. H. Kim, M. Kang, C. M. Bae, H. S. Kim, and S. Lee, Metall. Mater. Trans. A 45A, 1294 (2014).

    Article  Google Scholar 

  3. K.-H. Kim, S.-D. Park, J.-H. Kim, and C.-M. Bae, Met. Mater. Int. 18, 917 (2012).

    Article  Google Scholar 

  4. B. Hwang, T.-H. Lee, J.-H. Shin, and J.-W. Lee, Korean J. Met. Mater. 52, 21 (2014).

    Article  Google Scholar 

  5. A. Marchand and J. Duffy, J. Mech. Phys. Solids 36, 251 (1988).

    Article  Google Scholar 

  6. S. N. Medyanik, W. K. Liu, and S. Li, J. Mech. Phys. Solids 55, 1439 (2007).

    Article  Google Scholar 

  7. R. G. O’Donnell and R. L. Woodward, J. Mater. Sci. 23, 3578 (1988).

    Article  Google Scholar 

  8. D.-K Kim, S. Y. Kang, S. Lee, and K. J. Lee, Metall. Mater. Trans. A 30A, 81 (1999).

    Article  Google Scholar 

  9. H. L. Park, K. C. Jin, S. J. Baek, and C. S. Choi, J. Kor. Inst. Met. Mater. 29, 220 (1991)

    Google Scholar 

  10. K. Cho, Y. C. Chi, and J. Duffy, Metall. Trans. A 21A, 1161 (1990).

    Article  Google Scholar 

  11. P. R. Guduru, A. J. Rosakis, and G. Ravichandran, Mech. Mater. 33, 371 (2001).

    Article  Google Scholar 

  12. Y. Bai and B. Dodd, Adiabatic Shear Localization-Occurrence, Theories, and Applications, p.10, Pregamon Press, New York (1992).

    Google Scholar 

  13. J. L. Sun, P. W. Trimby, F. K. Yan, X. Z. Liao, N. R. Tao, and J. T. Wang, Acta Mater. 79, 47 (2014).

    Article  Google Scholar 

  14. A. Sabih and J. A. Nemes, J. Mater. Process. Tech. 209, 4292 (2009).

    Article  Google Scholar 

  15. M. S. Salehi, N. Anjabin, and H. S. Kim, Met. Mater. Int. 20, 825 (2014).

    Article  Google Scholar 

  16. K. Cho, S. Lee, J. Duffy, and S. R. Nutt, Acta Metall. 41, 923 (1993).

    Article  Google Scholar 

  17. H. S. Kim, S.-H. Joo, and H. J. Jeong, Korean J. Met. Mater. 52, 87 (2014).

    Article  Google Scholar 

  18. E. D. H. Davies and S. C. Hunter, J. Mech. Phys. Solids 11, 155 (1963).

    Article  Google Scholar 

  19. W. Chen and B. Song, Split Hopkinson (Kolsky) Bar-Design, Testing, and Applications, p.7, Springer, New York (2011).

    Book  Google Scholar 

  20. R. C. Creese, Introduction to Manufacturing Processes and Materials, pp.36–37, Marcel Dekker, Inc., New York (1999)

    Google Scholar 

  21. B. Dodd and Y. Bai, Adiabatic Shear Localization-Frontiers and Advances, pp.111–171, Elsevier, Amsterdam (2012).

    Google Scholar 

  22. T. Weerasooriya and J. Clayton, Proc. 2006 Int. Conf. on Tungsten, Refractory & Hardmetals VI, pp.1–9, Metal Powder Industries Federation, Orlando, Florida (2006).

    Google Scholar 

  23. Z. Xiaoqing, L. Shukui, L. Jinxu, W. Yingchun, and W. Xing, Mater. Sci. Eng. A 527, 4881 (2010).

    Article  Google Scholar 

  24. G. R. Johnson and J. M. Hoegfeldt, U. S. Lindholm, A. Nagy, Trans. ASME 105, 42 (1983).

    Google Scholar 

  25. Y. P. Song, W. K. Wang, D. S. Gao, E. Y. Yoon, D. J. Lee, and H. S. Kim, Met. Mater. Int. 20, 445 (2014).

    Article  Google Scholar 

  26. C. L. Wittman, M. A. Meyers, and H.-R. Pak, Metall. Trans. A 21A, 707 (1990).

    Article  Google Scholar 

  27. S. Lee, K.-M. Cho, K. C. Kim, and W. B. Choi, Metall. Trans. A 24A, 895 (1993).

    Article  Google Scholar 

  28. K. T. Ramesh and R. S. Coates, Metall. Trans. A 23A, 2625 (1992).

    Article  Google Scholar 

  29. R. L. Woodward, N. J. Baldwin, I. Burch, and B. J. Baxter, Metall. Trans. A 16A, 2031 (1985).

    Article  Google Scholar 

  30. J. Lankford, A. Bose, and H. Couque, High Strain rate Behavior of Refractory Metals and Alloys (eds. R. Asfahani, E. Chen, and A. Crowson), p.267, TMS, Cincinnati, OH (1992).

  31. R. W. K. Honeycombe, Steels-Microstructure and Properties, Third ed., p.63, Edward Arnold, London (2006).

    Google Scholar 

  32. S. Boakye-Yiadom and M. N. Bassim, Mater. Sci. Eng. A 528, 8700 (2011).

    Article  Google Scholar 

  33. L. Tang, Z. Chen, C. Zhan, X. Yang, C. Liu, and H. Cai, Mater. Charact. 64, 21 (2012).

    Article  Google Scholar 

  34. Y. Xu, J. H. Zhang, Y. L. Bai, and M. A. Mayers, Metall. Mater. Trans. A 39A, 811 (2008).

    Article  Google Scholar 

  35. J. H. Beatty, L. W. Meyer, M. A. Meyers, and S. Nemat-Nasser, Shock-Wave and High-Strain-Rate Phenomena (eds. M. A Meyers, L. E. Murr, K. P. Staudhammer), pp.645–656, Marcel Dekker, NewYork (1992).

  36. S. P. Timothy, Acta Metall. 35, 301 (1987).

    Article  Google Scholar 

  37. H.-S. Kim and Y.-T. Im, Trans. ASME 121, 336 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minju Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, M., Park, J., Sohn, S.S. et al. Adiabatic shear banding and cracking phenomena occurring during cold-forging simulation tests of plain carbon steel wire rods by using a split Hopkinson’s pressure bar. Met. Mater. Int. 21, 991–999 (2015). https://doi.org/10.1007/s12540-015-5252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5252-6

Keywords

Navigation