Skip to main content
Log in

Microstructure evolution and tensile mechanical properties of thixoformed high performance Al-Zn-Mg-Cu alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al-Zn-Mg-Cu alloys are the strongest aluminum alloys which have been widely used for aerospace applications. They are usually machined from the wrought state usually with a high waste percentage. To reduce waste, it is important to thixoform these alloys in near net shape. In this work, the thixoformability of a commercial high performance Al-Zn-Mg-Cu alloy 7075 was studied. A novel multistep reheating regime was developed in recrystallization and partial melting (RAP) route to obtain spheroidal semi-solid microstructures. The as-extruded 7075 alloy was fully recrystallized for a short holding time using the multistep reheating regime. Semi-solid microstructures with fine and spherical solid grains with a grain size of 40-50 μm embedded in liquid matrix were obtained. The advantage of the multistep reheating regimes over those conventional routes was also discussed. Some wheel-shaped components were thixoformed from the as-received 7075 alloy. The ultimate tensile strength, yield strength and elongation to fracture of the thixoformed component based on multistep reheating regime, are 510 MPa, 446 MPa and 17.5% respectively. These values are superior to those of the products manufactured with the conventional RAP route. As the results indicated, thixoforming could be conducted based on commercial extruded Al-Zn-Mg-Cu alloys, which has important practical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. V. Atkinson, Prog. Mater. Sci. 50, 341 (2005).

    Article  Google Scholar 

  2. M. C. Flemings, Metall. Trans. B 22A, 957 (1991).

    Article  Google Scholar 

  3. G. Hirt, R. Cremer, T. Witulski, and H.-C. Tinius, Mater. Des. 18, 315 (1997).

    Article  Google Scholar 

  4. Y. Birol, J. Alloys Compd. 461, 132 (2008).

    Article  Google Scholar 

  5. S. Menargues, E. Martín, M. T. Baile, and J. A. Picas, Mater. Sci. Eng. A 621, 236 (2015).

    Article  Google Scholar 

  6. N. Haghdadi, A. Zarei-Hanzaki, S. Heshmati-Manesh, H. R. Abedi, and S. B. Hassas-Irani, Mater. Des. 49, 878 (2013).

    Article  Google Scholar 

  7. S. B. Hassas-Irani, A. Zarei-Hanzaki, B. Bazaz, and A. A. Roostaei, Mater. Des. 46, 579 (2013).

    Article  Google Scholar 

  8. D. Liu, H. V. Atkinson, P. Kapranos, W. Jirattiticharoean, and H. Jones, Mater. Sci. Eng. A 361, 213 (2003).

    Article  Google Scholar 

  9. J. J. Wang, A. B. Phillion, and G. M. Lu, J. Alloys Compd. 609, 290 (2014).

    Article  Google Scholar 

  10. Y. Birol, J. Mater. Process. Technol. 211, 1749 (2011).

    Article  Google Scholar 

  11. Y. Meng, S. Sugiyama, J. Tan, and J. Yanagimoto, J. Mater. Process. Technol. 214, 3037 (2014).

    Article  Google Scholar 

  12. L. Rogal, J. Dutkiewicz, H. V. Atkinson, L. Litynska-Dobrzynska, and T. Czeppe, M. Modigell, Mater. Sci. Eng. A 580, 362 (2013).

    Article  Google Scholar 

  13. S. Y. Lee and S. I. Oh, J. Mater. Process. Technol. 130, 587 (2002).

    Article  Google Scholar 

  14. J. T. Staley, Proc. 3rd Int. Conf. on Al. Alloys (eds. L. Arnberg, O. Lohne, E. Nes, N. Ryum), p.107, Norwegian Institute of Technology, SINTEF, Trondheim, Norway (1992).

  15. H. V. Atkinson, K. Burke, and G. Vaneetveld, Mater. Sci. Eng. A 490, 266 (2008).

    Article  Google Scholar 

  16. S. Chayong, H. V. Atkinson, and P. Kapranos, Mater. Sci. Eng. A 390, 3 (2005).

    Article  Google Scholar 

  17. D. H. Kirkwood, C. M. Sellars, and L. G. Elias-Boyed, Eu Pat. 0305375, B1 (1992).

    Google Scholar 

  18. L. Bäckerud, E. Król, and J. Tamminen. Wrought Alloys, Vol. 1, pp.113–123, Skan Aluminium, tOslo (1986).

    Google Scholar 

  19. T. E. Hsieh and R. W. Balluffi, Acta Metall. 37, 1637 (1989).

    Article  Google Scholar 

  20. Y. Mishin, W. J. Boettinger, J. A. Warren, and G. B. McFadden, Acta Mater. 57, 3771 (2009).

    Article  Google Scholar 

  21. P. L. Williams, Y. Mishin, Acta Mater. 57, 3786 (2009).

    Article  Google Scholar 

  22. D. Fan, S. P. Chen, L. Q. Chen, and P. W. Voorhees, Acta Mater. 50, 1895 (2002).

    Article  Google Scholar 

  23. E. Tzimas and A. Zavaliangos, Mater. Sci. Eng. A 289, 228 (2000).

    Article  Google Scholar 

  24. E. Tzimas and A. Zavaliangos, Mater. Sci. Eng. A 289, 217 (2000).

    Article  Google Scholar 

  25. V. A. Snyder, J. Alkemper, and P. W. Voorhees, Acta Mater. 49, 699 (2001).

    Article  Google Scholar 

  26. E. D. Manson-Whitton, I. C. Stone, J. R. Jones, P. S. Grant, and B. Cantor, Acta Mater. 50, 2517 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Chen, Q., Wang, B. et al. Microstructure evolution and tensile mechanical properties of thixoformed high performance Al-Zn-Mg-Cu alloy. Met. Mater. Int. 21, 897–906 (2015). https://doi.org/10.1007/s12540-015-5139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-5139-6

Keywords

Navigation