Skip to main content
Log in

Effect of interstitial solutes on precipitation behavior of 9–12% chromium ferritic steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effects of nitrogen and carbon content on precipitation behavior in two 9–12% Cr ferritic heat-resistant steels during isothermal transformation were investigated. Isothermal aging treatments at 700 °C after solution annealing were carried out for the different periods up to over 220 h. Microstructure characterization was performed by many characterization methods, such as physicochemical phase analysis, X-ray diffraction and scanning electron microscope etc. It was found that Cr-rich M2N nitride was formed as the main precipitate in the alloy A with content of 0.15% N and 0.03% C in wt%, together with some Cr-rich M23C6 carbide and Nb-rich MN nitride. Comparatively, the aged alloy B with 0.05% N and 0.11% C, predominantly contains Cr-rich M23C6 carbides. Besides, both alloys showed the similar microstructure evolution process: The precipitates were found to be formed initially along prior austenite grain boundaries, then grew toward interior of grain in the form of cell with the increasing aging time. Meanwhile, the cell growth feature was also discussed based on the experimental observation in well-controlled specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Edmonds and R. Honeycombe, Precipitation Processes in Solids, Metallurgical Society of AIME, p.121, Warrendale, PA (1978).

    Google Scholar 

  2. J. Pilling and N. Ridley, Metall. Trans. A 13, 557 (1982).

    Article  Google Scholar 

  3. J. Janovec, A. Výrostková, and A. Holý, J. Mater. Sci. 27, 6564 (1992).

    Article  Google Scholar 

  4. M. Speidel, in Proceedings of the 1st International Conference on High Nitrogen Steels-HNS 88, pp.92–96, Lille (1988).

    Google Scholar 

  5. P. Uggowitzer and M. Harzenmoser, High Nitrogen Steels-HNS 88, 174 (1988).

    Google Scholar 

  6. M. Speidel, Proceedings of the 2nd Int. Conf. ‘High Nitrogen Steels’ HNS90, pp.128–131, Aachen, Germany (1990).

    Google Scholar 

  7. P. Uggowitzer and M. Speidel, Proc. 2nd Int. Conf. High-Nitrogen Steels 90, 156 (1990).

    Google Scholar 

  8. E. Werner, Mater. Sci. Eng. A 101, 93 (1988).

    Google Scholar 

  9. A. Ramirez, J. Lippold, and S. Brandi, Metall. Mater. Trans. A 34, 1575 (2003).

    Article  Google Scholar 

  10. C. Tedmon and D. Vermilyea, Metall. Mater. Trans. B 1, 2043 (1970).

    Article  Google Scholar 

  11. F. Vanderschaeve, R. Taillard and J. Foct, J. Mater. Sci. 30, 6035 (1995).

    Article  Google Scholar 

  12. R. Jargelius-Pettersson, Z. Metallkd. 89, 177 (1998).

    Google Scholar 

  13. C. Briant, R. Mulford, and E. Hall, Corrosion 38, 468 (1982).

    Article  Google Scholar 

  14. R. Beneke and R. Sandenbergh, Corrosion Sci. 29, 543 (1989).

    Article  Google Scholar 

  15. J. Lai, Mater. Sci. Eng. 58, 195 (1983).

    Article  Google Scholar 

  16. V. G. Gavriljuk and H. Berns, High Nitrogen Steels: Structure, Properties, Manufacture, Applications, p.378, Springer-Verlag, Berlin (1999).

    Book  Google Scholar 

  17. M. Tanaka, O. Miyagawa, T.-A. Sakaki, and D. Fujishiro, J. Jan. I. Met. 40, 543 (1976).

    Google Scholar 

  18. M. Tanaka, O. Miyagawa, and D. Fujishiro, J. Jan. I. Met. 41, 11 (1977).

    Google Scholar 

  19. M. Tanaka, O. Miyagawa, and D. Fujishiro, J. Jan. I. Met. 38, 899 (1974).

    Google Scholar 

  20. M. T. M Kobayashi, O. Miyagawa, T. Saga, and D. Fujishiro, Tetsu to Hagané, 58, 1984 (1972).

    Google Scholar 

  21. T. Tanaka, M. Kikuchi, and R. Tanaka, J. Jan. I. Met. 41, 1145 (1977).

    Google Scholar 

  22. W. Gust, Phase transformations 1, 27 (1979).

    Google Scholar 

  23. D. Williams and E. Butler, International Metals Reviews 26, 153 (1981).

    Article  Google Scholar 

  24. M. Kikuchi, M. Kajihara, and S.-K. Choi, Mate. Sci. Eng. A 146, 131 (1991).

    Article  Google Scholar 

  25. I. F. Machado and A. F. Padilha, Steel Res. 67, 285 (1996).

    Google Scholar 

  26. I. F. Machado, A. M. Kliauga, and A. F. Padilha, Steel. Res. 69, 381 (1998).

    Google Scholar 

  27. P. A. Carvalho, I. F. Machado, G. Solórzano, and A. F. Padilha, Philos. Mag. 88, 229 (2008).

    Article  Google Scholar 

  28. H. Aaronson and J. Clark, Acta Metall. Mater. 16, 845 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, X., Li, C., Han, L. et al. Effect of interstitial solutes on precipitation behavior of 9–12% chromium ferritic steels. Met. Mater. Int. 21, 440–445 (2015). https://doi.org/10.1007/s12540-015-4431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4431-9

Keywords

Navigation