Skip to main content
Log in

Grain refinement of Al-Mg-Sc alloy by ultrasonic treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In foundry practice, ultrasonic treatment has been used as an efficient technique to achieve grain refinement in aluminium and magnesium alloys. This article shows the strong effect of pouring temperature and ultrasonic treatment at various temperatures on the grain refinement of Al-1 wt% Mg-0.3 wt% Sc alloy. Without ultrasonic treatment, a fine grain structure was obtained at the pouring temperature of 700 °C. The average grain size sharply decreases from 487 ± 20 to 103 ± 2 μm when the pouring temperature decreases from 800 to 700 °C. Ultrasonic vibration proved to be a potential grain refinement technique with a wide range of pouring temperature. A microstructure with very fine and homogeneous grains was obtained by applying ultrasonic treatment to the melt at the temperature range between 700 and 740 °C, before pouring. Cavitation-enhanced heterogeneous nucleation is the mechanism proposed to explain grain refinement by ultrasound in this alloy. Moreover, ultrasonic treatment of the melt was found to lead to cast samples with hardness values similar to those obtained in samples submitted to precipitation hardening, suggesting that ultrasonic treatment can avoid carrying out heat treatment of cast parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Cantor and K. O’Reilly, Solidification and Casting, pp. 213–219, Institute of Physics Pub, Bristol, England (2003).

    Book  Google Scholar 

  2. A. L. Greer, P. S. Cooper, M. W. Meredith, W. Schneider, P. Schumacher, J. A. Spittle, and A. Tronche, Adv. Eng. Mater. 5, 81 (2003).

    Article  Google Scholar 

  3. A. L. Greer, A. M. Bunn, A. Tronche, P. V. Evans, and D. J. Bristow, Acta. Mater. 48, 2823 (2000).

    Article  Google Scholar 

  4. P. S. Mohanty and J. E. Gruzleski, Acta. Metall. Mater. 43, 2001 (1995).

    Article  Google Scholar 

  5. S. Nafisi, D. Emadi, M. T. Shehata, and R. Ghomashchi, Mater. Sci. Eng. A 432, 71 (2006).

    Article  Google Scholar 

  6. K. Xia and G. Tausig, Mater. Sci. Eng. A 246, 1 (1998).

    Article  Google Scholar 

  7. R. Haghayeghi, E. J. Zoqui, D. G. Eskin, and H. Bahai, J. Alloy. Compd. 485, 807 (2009).

    Article  Google Scholar 

  8. R. Haghayeghi and L. Nastac, Mater. Lett. 65, 3230 (2011).

    Article  Google Scholar 

  9. W. Khalifa, Y. Tsunekawa, and M. Okumiya, Int. J. Cast. Metal. Res. 21, 129 (2008).

    Article  Google Scholar 

  10. X. Jian, H. Xu, T. T. Meek, and Q. Han, Mater. Lett. 59, 190 (2005).

    Article  Google Scholar 

  11. H. K. Feng, S. R. Yu, Y. L. Li, and L. Y. Gong, J. Mater. Process. Tech. 208, 330 (2008).

    Article  Google Scholar 

  12. H. Xu, Q. Han, and T. T. Meek, Mater. Sci. Eng. A 473, 96 (2008).

    Article  Google Scholar 

  13. G. I. Eskin, Ultrasonic Treatment of Light Alloy Melts, pp. 135–166, Gordon and Breach Science, Amsterdam, Netherlands (1998).

    Google Scholar 

  14. Y. L. Li, H. K. Feng, F. R. Cao, Y. B. Chen, and L. Y. Gong, Mater. Sci. Eng. A 487, 518 (2008).

    Article  Google Scholar 

  15. M. A. Easton and D. H. StJohn, Acta. Mater. 49, 1867 (2001).

    Article  Google Scholar 

  16. J. D. Hunt and K. A. Jackson, Jpn. J. Appl. Phys. 37, 254 (1966).

    Article  Google Scholar 

  17. X. Jian, T. T. Meek, and Q. Han, Scripta. Mater. 54, 893–896 (2006).

    Article  Google Scholar 

  18. O. V. Abramov, Ultrasound in Liquid and Solid Metals, pp. 273–326, CRC Press, Florida, U.S.A (1994).

    Google Scholar 

  19. G. I. Eskin, Ultrasonics Sonochemistry. 1, S59 (1994).

    Article  Google Scholar 

  20. M. Qian, A. Ramirez, and A. Das, Journal of Crystal Growth. 311, 3708 (2009).

    Article  Google Scholar 

  21. X. Liu, Y. Osawa, S. Takamori, and T. Mukai, Mater. Sci. Eng. A 487, 120 (2008).

    Article  Google Scholar 

  22. D. Gao, Z. Li, Q. Han, and Q. Zhai, Mat. Sci. Eng. A-Struct. A 502, 2 (2009).

    Article  Google Scholar 

  23. M. Qian, A. Ramirez, A. Das, and D. H. StJohn, Journal of Crystal Growth 312, 2267 (2010).

    Article  Google Scholar 

  24. A. Ramirez, M. Qian, B. Davis, T. Wilks, and D. H. StJohn, Scripta. Mater. 59, 19 (2008).

    Article  Google Scholar 

  25. M. Khosro Aghayani, and B. Niroumand, J. Alloy. Compd. 509, 114 (2011).

    Article  Google Scholar 

  26. S. Zhang, Y. Zhao, X. Cheng, G. Chen, and Q. Dai, J. Alloy. Compd. 470, 168 (2009).

    Article  Google Scholar 

  27. H. Puga, J. Barbosa, S. Costa, S. Ribeiro, A. M. P. Pinto, and M. Prokic, Mater. Sci. Eng. A 560, 589 (2013).

    Article  Google Scholar 

  28. H. Puga, S. Costa, J. Barbosa, S. Ribeiro, and M. Prokic, J. Mater. Process. Tech. 211, 1729 (2011).

    Article  Google Scholar 

  29. S. R. Yu, H. K. Feng, Y. L. Li, and L. Y. Gong, J. Alloy. Compd. 484, 360 (2009).

    Article  Google Scholar 

  30. E. A. Marquis and D. N. Seidman, Acta. Mater. 53, 4259 (2005).

    Article  Google Scholar 

  31. S. Lathabai and P. G. Lloyd, Acta. Mater. 50, 4275 (2002).

    Article  Google Scholar 

  32. R. Sawtell and C. Jensen, MTA. 21, 421 (1990).

    Article  Google Scholar 

  33. R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles, 4th ed., pp. 439–442, Cengage Learning, Stamford, USA (2008).

    Google Scholar 

  34. B. S. Murty, S. A. Kori, and M. Chakraborty, Int. Mater. Rev. 47, 3 (2002).

    Article  Google Scholar 

  35. M. Johnsson, L. Backerud, and G. Sigworth, Metall and Mat Trans A 24, 481 (1993).

    Article  Google Scholar 

  36. H. T. Li, Y. Wang, and Z. Fan, Acta. Mater. 60, 1528 (2012).

    Article  Google Scholar 

  37. S. Costa, H. Puga, J. Barbosa, and A. M. P. Pinto, Mater. Design. 42, 347 (2012).

    Article  Google Scholar 

  38. U. Patakham, J. Kajornchaiyakul, and C. Limmaneevichitr, J. Alloy. Compd. 542, 177 (2012).

    Article  Google Scholar 

  39. W. G. Zhang, Y. C. Ye, L. J. He, P. J. Li, X. Feng, and L. S. Novikov, Mater. Sci. Eng. A 578, 35 (2013).

    Article  Google Scholar 

  40. A. Pisch, J. Gröbner, and R. Schmid-Fetzer, Mater. Sci. Eng. A 289, 123 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Q. Tuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuan, N.Q., Puga, H., Barbosa, J. et al. Grain refinement of Al-Mg-Sc alloy by ultrasonic treatment. Met. Mater. Int. 21, 72–78 (2015). https://doi.org/10.1007/s12540-015-1008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-1008-6

Keywords

Navigation