Skip to main content
Log in

Cooldown-induced hydride reorientation of hydrogen-charged zirconium alloy cladding tubes

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Radial hydride precipitation behaviors of Zr-Nb alloy cladding tubes were investigated using 250 and 500 ppm hydrogen-charged Zr-Nb alloy cladding tubes, cooldown processes from 400 to 300, 200°C and room temperature with five kinds of cooling rates of 0.3, 2.0, 4.0, 7.0 15.0 °C/min under a tensile hoop stress of 150 MPa, which can simulate various cooldown processes during an interim dry storage of PWR nuclear fuel. The slower cooling rate and the lower terminal cooldown temperature generated the more hydrides precipitated during the cooldown as well as the larger fraction and the longer length of radial hydrides. These phenomena can be explained by the difference in the terminal solid solubility of hydrogen for dissolution and precipitation occurring during the heatup and cooldown processes and the cooling rate-dependent hydride nucleation and growth rates. In addition, a drastic decrease in ultimate tensile strength and plastic strain of the tensile tested specimens experiencing the cool-down processes appear to be correlated with the amount of the radial hydrides precipitated during the cooldown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bai, N. Gilbon, C. Prioul, and D. Francois, Metall. Mater. Trans. 25A, 1199 (1994).

    Article  Google Scholar 

  2. B. Cox and Y. Wong, J. Nucl. Mater. 270, 134 (1999).

    Article  Google Scholar 

  3. S. Hong, K. Lee, and K. Kim, J. Nucl. Mater. 303, 169 (2002).

    Article  Google Scholar 

  4. R. Singh, R. Kishore, S. Singh, T. Sinha, and B. Kashyap, J. Nucl. Mater. 325, 26 (2004).

    Article  Google Scholar 

  5. H. M. Chung, Proc. Int. Topical Meeting on Light Water Reactor Fuel Performance, p.325, Park City, Utah, U.S.A., (2000).

    Google Scholar 

  6. K. Colas, A. Motta, J. Almer, M. Daymond, M. Kerr, and A. Banchik, Acta Mater. 58, 6575 (2010).

    Article  Google Scholar 

  7. S. Kim, S. Kwon, and Y. Kim, J. Nucl. Mater. 273, 52 (1999).

    Article  Google Scholar 

  8. G. Bertolino, G. Meyer, and J. Perez Ipina, J. Nucl. Mater. 320, 272 (2003).

    Article  Google Scholar 

  9. A. Varias and A. Massih, J. Nucl. Mater. 279, 273 (2000).

    Article  Google Scholar 

  10. K. Une and S. Ishimoto, J. Nucl. Mater. 322, 66 (2003).

    Article  Google Scholar 

  11. M. S. Kim, H. G. Kim, S. J. Min, and K. T. Kim, Korean J. Met. Mater. 51, 477 (2013).

    Google Scholar 

  12. S. J. Min, M. S. Kim, C. C. Won, and K. T. Kim, Korean J. Met. Mater. 51, 487 (2013).

    Google Scholar 

  13. S. J. Min, M. S. Kim, and K. T. Kim, J. Nucl. Mater. 441, 306 (2013).

    Article  Google Scholar 

  14. Y. S. Kim, Met. Mat. Int. 11, 29 (2005).

    Article  Google Scholar 

  15. Y. S. Kim, S. J. Choi, and Y. M. Cheong, Met. Mat. Int. 11, 39 (2005).

    Article  Google Scholar 

  16. R. Marshall, J. Nucl. Mater. 24, 34 (1967).

    Article  Google Scholar 

  17. M. Louthan Jr. and R. Marshall, J. Nucl. Mater. 9, 170 (1963).

    Article  Google Scholar 

  18. R. Marshall and M. Louthan Jr., Trans. ASM 56, 693 (1963).

    Google Scholar 

  19. SFST-ISG-11 Revision 3, Cladding Considerations for the Transportation and Storage of Spent Fuel, USNRC (2003).

    Google Scholar 

  20. H. Kim, I. Kim, S. Park, J. Park, and Y. Jeong, Kor. J. Met. Mater. 48, 717 (2010).

    Google Scholar 

  21. R. Marshall, J. Nucl. Mater. 24, 49 (1967).

    Article  Google Scholar 

  22. J. Kearns and C. Woods, J. Nucl. Mater. 20, 241 (1966).

    Article  Google Scholar 

  23. B. Kammenzind, D. Franklin, W. Duffin and H. Peters, 11 th Int. Sym. on Zirconium in the Nuclear Industry (eds, E. R. Bradley and G. P. Sabol), p. 338, Garmisch-Partenkirchen, Germany (1995).

  24. M. Puls, AECL-8381, Atomic Energy of Canada (1984).

    Google Scholar 

  25. I. Lifshitz and V. Slyozov, Soviet Phys. JETP 35, 331 (1959).

    Google Scholar 

  26. C. Wagner, Z. Elektrochem. 65, 581 (1961).

    Google Scholar 

  27. R. Bourcier and D. Koss, Acta Metall. 32, 2091 (1984).

    Article  Google Scholar 

  28. Y. Fan and D. Koss, Metall. Trans. A16, 675 (1985).

    Google Scholar 

  29. D. Northwood and U. Kosasih, Int. Met. Rev. 28, 92 (1983).

    Article  Google Scholar 

  30. G. Itoh, M. Kanno, T. Hagiwara, and T. Sakamoto, Acta Mater. 47, 3799 (1999).

    Article  Google Scholar 

  31. V. Perovic, G. Weatherly, and C. Simpson, Acta Metall. 31, 1381 (1983).

    Article  Google Scholar 

  32. L. Shi, Z. Yan, X. Yang, Z. Qiao, B. Nim, and H. Li, Met. Mater. Int. 20, 19 (2014).

    Article  Google Scholar 

  33. B. Kim, T. Trang, and N. Kim, Met. Mater. Int. 20, 35 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, JJ., Min, SJ. & Kim, KT. Cooldown-induced hydride reorientation of hydrogen-charged zirconium alloy cladding tubes. Met. Mater. Int. 21, 31–42 (2015). https://doi.org/10.1007/s12540-015-1005-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-1005-9

Keywords

Navigation