Skip to main content
Log in

Electrolyte composition dependence of the morphological and nanostructural features of porous silicon prepared by electrochemical anodic etching

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Porous silicon layers were formed by electrochemical anodic etching of p-type Si wafers. The electrostatic condition at the interface between the Si wafers and electrolytes was affected sensitively by the addition of isopropyl alcohol (IPA) in the etchant. As the IPA ratio was varied in the range of 0 to 75%, the ideality factor in the ln I-V relationships and the viscosity of the electrolytes changed from 27.2 to 16.0, and from 1.0 to 3.3 cp, respectively. The etched surface exhibited three different morphologies, such as ‘turtle-back’-, ‘column’-, and ‘mountain’-like structures depending on the electrolyte composition. The etched layers contained Si nanocrystallites, ~5.5 to ~2.6 nm in size, which exhibited photoluminescence features in the wavelength range, 733 to 624 nm. The variation of the band gap was determined by size of the nanocrystallites, whereas the nanostructural and morphological features were dependent on the IPA ratios of the etchants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Cullis and L. T. Canham, Nature 353, 335 (1991).

    Article  Google Scholar 

  2. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, J. Appl. Phys. 82, 909 (1997).

    Article  Google Scholar 

  3. H. C. Shin, J. A. Corno, J. L. Gole, and M. Liu, J. Power Sources 139, 314 (2005).

    Article  Google Scholar 

  4. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).

    Article  Google Scholar 

  5. D. J. Blackwood and Y. Zhang, Electrochim. Acta 48, 623 (2003).

    Article  Google Scholar 

  6. S. Setzu, G. Lerondel, and R. Romestain, J. Appl. Phys. 84, 3129 (1998).

    Article  Google Scholar 

  7. M. Servidori, C. Ferrero, S. Lequien, S. Milita, A. Parisini, R. Romestain, S. Sama, S. Setzu, and D. Thiaudière, Solid State Commun. 118, 85 (2001).

    Article  Google Scholar 

  8. G. Lammel and Ph. Renaud, Sensor. Actuat. A-Phys. 85, 356 (2000).

    Article  Google Scholar 

  9. G. D. Arrigo, S. Coffa, and C. Spinella, Sensor. Actuat. APhys. 99, 112 (2002).

    Article  Google Scholar 

  10. R. R. K. Reddy, A. Chadha, and E. Bhattacharya, Biosens. Bioelectron. 16, 313 (2001).

    Article  Google Scholar 

  11. E. W. Flick, Industrial Solvents Handbook, 5 th ed., pp.238–297, Wiliam Andrew Publishing, New York (2002).

    Google Scholar 

  12. Y. Nagasawa, Y. Nakagawa, A. Nagafuji, T. Okada, and H. Miyasaka, J. Mol. Struct. 735–736, 217 (2005).

    Article  Google Scholar 

  13. V. I. Kuchuk, I. Y. Shirokova, and E. V. Golikova, Glass Phys. Chem 38, 460 (2012).

    Article  Google Scholar 

  14. S. A. Parke and G. G. Birch, Food Chem. 67, 241 (1999).

    Article  Google Scholar 

  15. X. G. Zhang, S. D. Collins, and R. L. Smith, J. Electrochem. Soc. 136, 1561 (1989).

    Article  Google Scholar 

  16. R. L. Smith and S. D. Collin, J. Appl. Phys. 71, R1 (1992).

    Article  Google Scholar 

  17. M. N. Islam, S. K. Ram, and S. Kumar, J. Phys. D. Appl. Phys. 40, 5840 (2007).

    Article  Google Scholar 

  18. D. R. Turner, J. Electrochem. Soc. 105, 402 (1957).

    Article  Google Scholar 

  19. C. W. Tobias, M. Eisenberg, and C. R. Wilke, J. Electrochem. Soc. 99, 359C (1952).

    Article  Google Scholar 

  20. P. Mengucci, G. Barucca, A. P. Caricato, A. D. Cristoforo, G. Leggieri, A. Luches, and G. Majnia, Thin Solid Films 478, 125 (2005).

    Article  Google Scholar 

  21. H. P. Klug, X-ray Diffraction Procedures, 2nd ed., pp.687–692, Wiley-interscience, New York (1954).

    Google Scholar 

  22. G. Gyawali, S. H. Cho, and S. W. Lee, Met. Mater. Int. 19, 113 (2013).

    Article  Google Scholar 

  23. C. Ma, S. C. Wang, R. J. K. Wood, J. Zekonyte, Q. Luo, and F. C. Walsh, Met. Mater. Int. 19, 1187 (2013).

    Article  Google Scholar 

  24. Z. Sui, P. P. Leong, and I. P. Herman, Appl. Phys. Lett. 60, 2086 (1992).

    Article  Google Scholar 

  25. A. A. Sirenko, J. R. Fox, I. A. Akimov, X. X. Xi, S. Ruvimov, and Z. Liliental-Weber, Solid State Commun. 113, 553 (2000).

    Article  Google Scholar 

  26. Y. He, C. Y. Yin, G. Cheng, L. Wang, X. Liu, and G. Y. Hu, J. Appl. Phys. 75, 797 (1994).

    Article  Google Scholar 

  27. H. S. Kwack, Y. Sun, Y. H. Cho, and N. M. Park, Appl. Phys. Lett. 83, 2901 (2003).

    Article  Google Scholar 

  28. M. Song, Y. Fukuda, and K. Furuya, Micron 31, 429 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Hee Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HH., Son, JI., Yun, HS. et al. Electrolyte composition dependence of the morphological and nanostructural features of porous silicon prepared by electrochemical anodic etching. Met. Mater. Int. 20, 1115–1121 (2014). https://doi.org/10.1007/s12540-014-6014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-6014-6

Keywords

Navigation