Skip to main content
Log in

Microstructural evolution of wet deposited nickel interfacial phases on phosphorus doped silicon surface

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Selective deposition and formation of Ni-Cu-Sn electrodes by electroless plating using an all-wet process were investigated to find a substitute for the commercial solar cells made by screen-printed Ag electrodes. Because of Ni-Cu-Sn multilayer, it is necessary to improve contact resistance at each interface using annealing process. So Nickel silicide was created by controlling the Si and Ni interface for the formation of an ohmic contact to reduce the contact resistance and improve the efficiency of solar cells. The phase transition and thermal stability of nickel silicide were analyzed in the annealing temperature range of 200–500 °C. Using electroless plated Ni, films with the thickness of 200±50 nm corresponding to the silicide phases of Ni2Si, Ni3Si2, and NiSi were identified from the thermal budget. The formation of the Ni74-Si26 silicide phase by rapid thermal processing at 250 °C was verified, and the possibility of low-temperature Ni silicidation was identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Kim and S. H. Lee, Elect. Mater. Lett. 9, 677 (2013).

    Article  Google Scholar 

  2. J. Bartsch, A. Mondon, K. Bayer, C. Schetter, M. Hörteis, and S. W. Glunz, J. Electrochem. Soc. 157, H942 (2010).

    Article  Google Scholar 

  3. R. Hezel, and K. Jaeger, J. Electrochem. Soc. 136, 518 (1989).

    Article  Google Scholar 

  4. P. Vitanov, N. Tyutyundzhiev, P. Stefchev, and B. Karamfilov, Sol. Energ. Mat. Sol. C. 44, 471 (1996).

    Article  Google Scholar 

  5. J. A. Amick and A. K. Ghosh, J. Electrochem. Soc. 130, 160 (1983).

    Article  Google Scholar 

  6. T. W. Krygowski, A. Rohatgi, and T. Selzer, J. Electrochem. Soc. 146, 1141 (1999).

    Article  Google Scholar 

  7. J. Zhao, A. Wang, P. P. Altermatt, S. R. Wenham, and M. A. Green, Sol. Energ. Mat. Sol. C. 41–42, 87 (1996).

    Article  Google Scholar 

  8. A. Nguyen, M.V. Rane-Fondacaro, H. Efstathiadis, and P. Haldar, 25th Eur. Photovoltaic Solar Energy Conference and Exhibition, p. 2672, Glasgow (2010).

    Google Scholar 

  9. V. A. Chaudhari, and C. S. Solanki, Sol. Energ. Mat. Sol. C. 94, 2094 (2010).

    Article  Google Scholar 

  10. L. Tous, D. V. Dorp, R. Russell, J. Das, M. Aleman, H. Bender, J. Meersschaut, K. Opsomer, J. Poortmans, and R. Mertens, Energy Procedia, 21, 39 (2012).

    Article  Google Scholar 

  11. G. Cocorullo, G. Prezioso, and M. Zarcone, Sol. Cells, 11, 19 (1984).

    Article  Google Scholar 

  12. S. H. Lee, Sol. Energ. 83, 1285 (2009).

    Article  Google Scholar 

  13. E. J. Lee, D. S. Kim, and S. H. Lee, Sol. Energ. Mat. Sol. C. 74, 65 (2002).

    Article  Google Scholar 

  14. J.-D. Lee, H.-Y. Kwon, M.-J. Kim, E.-J. Lee, H.-S. Lee, and S.-H. Lee, Renew. Energ. 42, 1 (2012).

    Article  Google Scholar 

  15. E. K. Lee, D. C. Lim, K. H. Lee, and J.-H. Lim, Elect. Mater. Lett. 8, 391 (2012).

    Article  Google Scholar 

  16. M. Suzuki, N. Sato, K.-I. Kanno, and Y. Soto, J. Electrochem. Soc. 129, 2183 (1982).

    Article  Google Scholar 

  17. D. K. Schroder and D. L. Meier, IEEE Trans. Elect. Dev. 31, 637 (1984).

    Article  Google Scholar 

  18. M. Bhaskaran, S. Sriram, T. Perova, V. Ermakov, G. Thorogood, K. Short, and Holland, Micron 40, 89 (2009).

    Article  Google Scholar 

  19. J. Foggiato, W. S. Yoo, M. Ouaknine, T. Murakami, and T. Fukada, Mater. Sci. Eng. B 114–115, 56 (2004).

    Article  Google Scholar 

  20. M. Amiotti and A. Borghesi, Am. Phys. Soc. 42, 8939 (1990).

    Google Scholar 

  21. A. Lauwers, A. Steegen, M. D. Potter, R. Lindsay, A. Satta, H. Bender, and K. Maex, Am.Vac. Soc. 19, 2026 (2001).

    Google Scholar 

  22. Z. Li, R. G. Gordon, H. Li, D. V. Shenai, and C. Lavoie, J. Electrochem. Soc. 157, H679 (2010).

    Article  Google Scholar 

  23. S. K. Min, D. H. Kim, and S. H. Lee, Elect. Mater. Lett. 9, 433 (2013).

    Article  Google Scholar 

  24. Z.-X. Xiao, G.-Y. Wu, G.-B. Zhang, Z.-H. Li, Y.-L. Hao, W.-R. Chen, and Y.-Y. Wang, J. Electrochem. Soc. 145, 1360 (1998).

    Article  Google Scholar 

  25. T. G. Woo, H. S. Park, K. H. Jung, W. Y. Jeon, and K. W. Seol, Met. Mater. Int. 17, 789 (2011).

    Article  Google Scholar 

  26. Z. Li, R. G. Gordon, H. Li, D. V. Shenai, and C. Lavoie, J. Electrochem. Soc. 157, H679 (2010).

    Article  Google Scholar 

  27. E. G. Colgan, J. P. Gambino, and B. Cunningham, Mater. Chem. Phys. 46, 209 (1996).

    Article  Google Scholar 

  28. J. Y. Song, S. Park, Y. D. Kim, M. G. Kang, S. J. Tark, S. Kwon, S. Yoon, and D. Kim, Met. Mater. Int. 18, 699 (2012).

    Article  Google Scholar 

  29. M. Bhaskaran, S. Sriram, and A. S. Holland, J. Electrochem. Soc. 157, H842 (2010).

    Article  Google Scholar 

  30. Y.-W. Ok, C.-J. Choi, and T.-Y. Seong, J. Electrochem. Soc. 150, G385 (2003).

    Article  Google Scholar 

  31. D.-X. Xu, S. R. Das, C. J. Peters, and L. E. Erickson, Thin Solid Films 326, 143 (1998).

    Article  Google Scholar 

  32. C. Boulord, A. Kaminski, B. Canut, S. Cardinal, and M. Lemiti, J. Electrochem. Soc. 157, H742 (2010).

    Article  Google Scholar 

  33. F. F. Zhao, J. Z. Zheng, Z. X. Shen, T. Osipowicz, W. Z. Gao, and L. H. Chan, Microelectron. Eng. 71, 104 (2004).

    Article  Google Scholar 

  34. C.-D. Lien and M.-A. Nicolet, Thin Solid Films 143, 63 (1986).

    Article  Google Scholar 

  35. Y.-J. Chang and J. L. Erskine, Am. Phys. Soc. 28, 5766 (1983).

    Google Scholar 

  36. K. Tsutsui, R. Xiang, K. Nagahiro, T. Shiozawa, P. Ahmet, Y. Okuno, M. Matsumoto, M. Kubota, K. Kakushima, and H. Iwai, Microelectron. Eng. 85, 315 (2008).

    Article  Google Scholar 

  37. E. Ma, B. S. Lim, and M.-A. Nicolet, Appl. Phys. A, 44, 157 (1987).

    Article  Google Scholar 

  38. D. Mangelinck and K. Hoummada, Elect. Phys. Lett. 92, 254101–1 (2008).

    Google Scholar 

  39. O. Chamirian, J. A. Kittl, A. Lauwers, O. Richard, M. V. Dal, and K. Maex, Microelectron. Eng. 70, 201 (2003).

    Article  Google Scholar 

  40. B. Bokhonov and M. Korchagin, J. Alloy. Compd. 319, 187 (2001).

    Article  Google Scholar 

  41. J. Park, Y. Noh, and O. Song, Korean J. Met. Mater. 50, 557 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Gyu Pyo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, A., Lee, S.J., Choi, E. et al. Microstructural evolution of wet deposited nickel interfacial phases on phosphorus doped silicon surface. Met. Mater. Int. 20, 775–783 (2014). https://doi.org/10.1007/s12540-014-4026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-4026-x

Keywords

Navigation