Skip to main content
Log in

Atomistic modeling for interfacial properties of Ni-Al-V ternary system

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Interatomic potentials for Ni-Al-V ternary systems have been developed based on the second-nearest-neighbor modified embedded-atom method potential formalism. The potentials can describe various fundamental physical properties of the relevant materials in good agreement with experimental information. The potential is utilized for an atomistic computation of interfacial properties of Ni-Al-V alloys. It is found that vanadium atoms segregate on the γ-fcc/L12 interface and this segregation affects the interfacial properties. The applicability of the atomistic approach to an elaborate alloy design of advanced Ni-based superalloys through the investigation of the effect of alloying elements on interfacial properties is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Pareige and D. Blavette, Scripta Mater. 44, 243 (2001).

    Article  Google Scholar 

  2. R. Poduri and L. Q. Chen, Acta Mater. 46, 1719 (1998).

    Article  Google Scholar 

  3. H. Zapolsky, C. Pareige, and L. Marteau, and D. Blavette, Calphad 25, 125 (2001).

    Article  Google Scholar 

  4. Y. S. Li, Z. Chen, and Y. L. Lu, J. Cent. South Univ. Technol. 12, 635 (2005).

    Article  Google Scholar 

  5. W. P. Dong, Y. X. Wang, and K. Yang, Chinese Sci. Bull. 56, 2055 (2011).

    Article  Google Scholar 

  6. A. C. Silva, J. Ågren, M. T. Clavaguera-Mora, D. Djurovic, T. G. Acebo, B. J. Lee, Zi-Kui Liu, P. Miodownik, and H. J. Seifert, Calphad 31, 53 (2007).

    Article  Google Scholar 

  7. H. K. Kim, W. S. Jung, and B. J. Lee, Acta Mater. 57, 3140 (2009).

    Article  Google Scholar 

  8. W. P. Dong, H. K. Kim, and W. S. Ko, B.-M. Lee, and B.-J. Lee, Calphad 38, 7 (2012).

    Article  Google Scholar 

  9. B. J. Lee and M. I. Baskes, Phys. Rev. B 62, 8564 (2000).

    Article  Google Scholar 

  10. B. J. Lee, M. I. Baskes, and H. Kim, and Y. K. Cho, Phys. Rev. B 64, 184102 (2001).

    Article  Google Scholar 

  11. M. I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  Google Scholar 

  12. B. J. Lee, J. H. Shim, and M. I. Baskes, Phys. Rev. B 68, 144112 (2003).

    Article  Google Scholar 

  13. B. J. Lee and J. W. Jang, Acta Mater. 55, 6779 (2007).

    Article  Google Scholar 

  14. J. H. Shim, W. S. Ko, K. H. Kim, H. S. Lee, J. Y. Suh, Y. W. Cho, and B. J. Lee, J. Membrane Sci. 430, 234 (2013).

    Article  Google Scholar 

  15. J. H. Rose, J. R. Smith, and F. Guinea, and J. Ferrante, Phys. Rev. B 29, 2963 (1984).

    Article  Google Scholar 

  16. M. I. Baskes, Mater. Chem. Phys. 50, 152 (1997).

    Article  Google Scholar 

  17. B. J. Lee, W. S. Ko, and H. K. Kim, E.-H. Kim, Calphad 34, 510 (2010).

    Article  Google Scholar 

  18. J. H. Xu, T. Oguchi, and A. J. Freeman, Phys. Rev. B 36, 4186 (1987).

    Article  Google Scholar 

  19. O. V. Savin, N. N. Stepanova, Y. N. Akshentsev, and D. P. Rodionov, Scripta Mater. 45, 883 (2001).

    Article  Google Scholar 

  20. G. Simmons and H. Wang, Single Crystal Elastic Constans and Calculated Aggregate Properties: A Handbook, 2nd ed., p.157, MIT Press, Cambridge, Massachusetts (1971).

    Google Scholar 

  21. K. Tanaka and M. Koiwa, Intermetallics 4, 529 (1996).

    Article  Google Scholar 

  22. Y. Zhang, N. Wanderka, G. Schumacher, R. Schneider, and W. Neumann, Acta Mater. 48, 2787 (2000).

    Article  Google Scholar 

  23. A. Epishin, T. Link, U. Brückner, and P. D. Portella, Acta Mater. 49, 4017 (2001).

    Article  Google Scholar 

  24. M. Tanimura and Y. Koyama, Acta Mater. 54, 4385 (2006).

    Article  Google Scholar 

  25. M. Y. Zhang, Y. X. Wang, and Z. Chen, Acta Metall. Sin. (China) 43, 1101 (2007).

    Google Scholar 

  26. D. Blavette, E. Cadel, C. Pareige, B. Deconihout, and P. Caron, Microsc. Microanal. 13, 464 (2007).

    Article  Google Scholar 

  27. T. Kitashima, T. Yokokawa, A. C. Yeh, and H. Harada, Intermetallics 16, 779 (2008).

    Article  Google Scholar 

  28. Y. Amouyal, Z. G. Mao, and D. N. Seidman. Appl. Phys. Lett. 93, 201905 (2008).

    Article  Google Scholar 

  29. G. J. Wagner, Sandia National Lab. private communication (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-ping Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Wp., Lee, BJ. & Chen, Z. Atomistic modeling for interfacial properties of Ni-Al-V ternary system. Met. Mater. Int. 20, 423–429 (2014). https://doi.org/10.1007/s12540-014-3004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-014-3004-7

Key words

Navigation