Skip to main content
Log in

Review of Progress in Diagnostic Studies of Autism Spectrum Disorder Using Neuroimaging

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

This review article summarizes the recent advances in the diagnostic studies of autism spectrum disorders (ASDs) considering some of the most influential research articles from the last two decades. ASD is a heterogeneous neurodevelopmental disorder characterized by abnormalities in social interaction, communication, and behavioral patterns as well as some unique strengths and differences. The current diagnosis systems are based on autism diagnostic observation schedule (ADOS) or autism diagnostic interview-revised (ADI-R), but biological markers are also important for an effective diagnosis of ASDs. The amalgamation of neuroimaging techniques, such as structural and functional magnetic resonance imaging (sMRI and fMRI), with machine-learning and deep-learning approaches helps throw new light on typical biological markers of ASDs at the early stage of life. To assess the performance of a deep neural network, we develop a light-weighted CNN model for ASD classification. The overall accuracy, precision, and F1-score of the proposed model are 99.92%, 99.93% and 99.92%, respectively. All the neuroimaging studies we have reviewed can be divided into 3 categories, viz. thickness, volume and functional connectivity-based studies. We conclude with a discussion of the major findings of considered studies and promising directions for future research in this field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The dataset used in this study is available in ABIDE online repository (ref. [51]).

References

  1. Patra S, Kar SK (2021) Autism spectrum disorder in India: a scoping review. Int Rev Psychiatry 33(1–2):81–112. https://doi.org/10.1080/09540261.2020.1761136

    Article  PubMed  Google Scholar 

  2. Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17(1):103–111. https://doi.org/10.1016/j.conb.2007.01.009

    Article  CAS  PubMed  Google Scholar 

  3. Elsabbagh M, Divan G, Koh Y-J, Kim YS, Kauchali S, Marcín C et al (2012) Global prevalence of autism and other pervasive developmental disorders. Autism Res 5(3):160–179. https://doi.org/10.1002/aur.239

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chauhan A, Sahu JK, Jaiswal N, Kumar K, Agarwal A, Kaur J et al (2019) Prevalence of autism spectrum disorder in Indian children: a systematic review and meta-analysis. Neurol India 67(1):100. https://doi.org/10.4103/0028-3886.253970

    Article  PubMed  Google Scholar 

  5. Kim YS, Leventhal BL, Koh Y-J, Fombonne E, Laska E, Lim E-C et al (2011) Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry 168(9):904–912. https://doi.org/10.1176/appi.ajp.2011.10101532

    Article  PubMed  Google Scholar 

  6. Saemundsen E, Ludvigsson P, Rafnsson V (2007) Autism spectrum disorders in children with a history of infantile spasms: a population-based study. J Child Neurol 22(9):1102–1107. https://doi.org/10.1177/0883073807306251

    Article  PubMed  Google Scholar 

  7. Schipul SE, Keller TA, Just MA (2011) Inter-regional brain communication and its disturbance in autism. Front Syst Neurosci 5:10. https://doi.org/10.3389/fnsys.2011.00010

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mueller S, Schuff N, Weiner M (2006) Evaluation of treatment effects in Alzheimer’s and other neurodegenerative diseases by MRI and MRS. NMR Biomed 19(6):655–668. https://doi.org/10.1002/nbm.1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suk H-I, Wee C-Y, Lee S-W, Shen D (2016) State-space model with deep learning for functional dynamics estimation in resting-state fmri. Neuroimage 129:292–307. https://doi.org/10.1016/j.neuroimage.2016.01.005

    Article  PubMed  Google Scholar 

  10. Plis SM, Hjelm DR, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, Calhoun VD (2014) Deep learning for neuroimaging: a validation study. Front Neurosci 8:229. https://doi.org/10.3389/fnins.2014.00229

    Article  PubMed  PubMed Central  Google Scholar 

  11. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F (2018) Identification of autism spectrum disorder using deep learning and the abide dataset. Neuroimage 17:16–23. https://doi.org/10.1016/j.nicl.2017.08.017

    Article  PubMed  Google Scholar 

  12. Anagnostou E, Taylor MJ (2011) Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here. Mol Autism 2(1):4. https://doi.org/10.1186/2040-2392-2-4

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hardan AY, Muddasani S, Vemulapalli M, Keshavan MS, Minshew NJ (2006) An mri study of increased cortical thickness in autism. Am J Psychiatry 163(7):1290–1292. https://doi.org/10.1176/ajp.2006.163.7.1290

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hardan AY, Libove RA, Keshavan MS, Melhem NM, Minshew NJ (2009) A preliminary longitudinal magnetic resonance imaging study of brain volume and cortical thickness in autism. Biol Psychiat 66(4):320–326. https://doi.org/10.1016/j.biopsych.2009.04.024

    Article  PubMed  Google Scholar 

  15. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW (2004) Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 24(38):8223–8231. https://doi.org/10.1523/JNEUROSCI.1798-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hadjikhani N, Joseph RM, Snyder J, Tager-Flusberg H (2006) Anatomical differences in the mirror neuron system and social cognition network in autism. Cereb Cortex 16(9):1276–1282. https://doi.org/10.1093/cercor/bhj069

    Article  PubMed  Google Scholar 

  17. Hyde KL, Samson F, Evans AC, Mottron L (2010) Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp 31(4):556–566. https://doi.org/10.1002/hbm.20887

    Article  PubMed  Google Scholar 

  18. Jiao Y, Chen R, Ke X, Chu K, Lu Z, Herskovits EH (2010) Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 50(2):589–599. https://doi.org/10.1016/j.neuroimage.2009.12.047

    Article  PubMed  Google Scholar 

  19. Hazlett HC, Poe MD, Gerig G, Styner M, Chappell C, Smith RG, Piven J (2011) Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch Gen Psychiatry 68(5):467–476. https://doi.org/10.1001/archgenpsychiatry.2011.39

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ et al (2017) Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641):348–351. https://doi.org/10.1038/nature21369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nunes AS, Vakorin VA, Kozhemiako N, Peatfield N, Ribary U, Doesburg SM (2020) Atypical age-related changes in cortical thickness in autism spectrum disorder. Sci Rep 10(1):1–15. https://doi.org/10.1038/s41598-020-67507-3

    Article  CAS  Google Scholar 

  22. Squarcina L, Nosari G, Marin R, Castellani U, Bellani M, Bonivento C, Brambilla P (2021) Automatic classification of autism spectrum disorder in children using cortical thickness and support vector machine. Brain Behav 11(8):e2238. https://doi.org/10.1002/brb3.2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JI, Bang S, Yang JJ, Kwon H, Jang S, Roh S, Kim BN (2022) Classification of preschoolers with low-functioning autism spectrum disorder using multimodal MRI data. J Autism Develop Disorders. https://doi.org/10.1007/s10803-021-05368-z

    Article  Google Scholar 

  24. Piven J, Arndt S, Bailey J, Andreasen N (1996) Regional brain enlargement in autism: a magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 35(4):530–536. https://doi.org/10.1097/00004583-199604000-00020

    Article  CAS  PubMed  Google Scholar 

  25. Piven J, Bailey J, Ranson BJ, Arndt S (1997) An mri study of the corpus callosum in autism. Am J Psychiatry 154(8):1051–1056. https://doi.org/10.1176/ajp.154.8.1051

    Article  CAS  PubMed  Google Scholar 

  26. Courchesne E, Karns C, Davis H, Ziccardi R, Carper R, Tigue Z et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an mri study. Neurology 57(2):245–254. https://doi.org/10.1212/wnl.57.2.245

    Article  CAS  PubMed  Google Scholar 

  27. Herbert M, Ziegler D, Deutsch C, O’brien L, Lange N, Bakardjiev A et al (2003) Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126(5):1182–1192. https://doi.org/10.1093/brain/awg110

    Article  CAS  PubMed  Google Scholar 

  28. Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Cavi- ness Jr VS (2004) Localization of white matter volume increase in autism and developmental language disorder. Annal Neurol 55(4):530–540. https://doi.org/10.1002/ana.20032

  29. Mosconi MW, Cody-Hazlett H, Poe MD, Gerig G, Gimpel-Smith R, Piven J (2009) Longitudinal study of amygdala volume and joint attention in 2-to 4-year-old children with autism. Arch Gen Psychiatry 66(5):509–516. https://doi.org/10.1001/archgenpsychiatry.2009.19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Schumann CM, Bloss CS, Barnes CC, Wideman GM, Carper RA, Akshoomoff N et al (2010) Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J Neurosci 30(12):4419–4427. https://doi.org/10.1523/JNEUROSCI.5714-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Frazier TW, Keshavan MS, Minshew NJ, Hardan AY (2012) A two-year longitudinal mri study of the corpus callosum in autism. J Autism Dev Disord 42(11):2312–2322. https://doi.org/10.1007/s10803-012-1478-z

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li G, Chen M-H, Li G, Wu D, Lian C, Sun Q, Wang L (2019) A longitudinal mri study of amygdala and hippocampal subfields for infants with risk of autism. In: International workshop on graph learning in medical imaging, pp. 164–171. https://doi.org/10.1007/978-3-030-35817-4_20

  33. Gao J, Chen M, Li Y, Gao Y, Li Y, Cai S, Wang J (2021) Multisite autism spectrum disorder classification using convolutional neural network classifier and individual morphological brain networks. Front Neurosci 14:1473. https://doi.org/10.3389/fnins.2020.629630

    Article  Google Scholar 

  34. Friston KJ (2011) Functional and effective connectivity: a review. Brain connectivity 1(1):13–36. https://doi.org/10.1089/brain.2011.0008

    Article  PubMed  Google Scholar 

  35. Just MA, Cherkassky VL, Keller TA, Minshew NJ (2004) Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of under- connectivity. Brain 127(8):1811–1821. https://doi.org/10.1093/brain/awh199

    Article  PubMed  Google Scholar 

  36. Koshino H, Carpenter PA, Minshew NJ, Cherkassky VL, Keller TA, Just MA (2005) Functional connectivity in an fmri working memory task in high-functioning autism. Neuroim Age 24(3):810–821. https://doi.org/10.1016/j.neuroimage.2004.09.028

    Article  Google Scholar 

  37. Just MA, Cherkassky VL, Keller TA, Kana RK, Minshew NJ (2007) Functional and anatomical cortical underconnectivity in autism: evidence from an fmri study of an executive function task and corpus callosum morphometry. Cereb Cortex 17(4):951–961. https://doi.org/10.1093/cercor/bhl006

    Article  PubMed  Google Scholar 

  38. Travers BG, Adluru N, Ennis C, Tromp DP, Destiche D, Doran S, Alexander AL (2012) Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res 5(5):289–313. https://doi.org/10.1002/aur.1243

    Article  PubMed  PubMed Central  Google Scholar 

  39. Supekar K, Uddin LQ, Khouzam A, Phillips J, Gaillard WD, Kenworthy LE, Menon V (2013) Brain hyperconnectivity in children with autism and its links to social deficits. Cell Rep 5(3):738–747. https://doi.org/10.1016/j.celrep.2013.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Ander-son JS (2013) Multisite functional connectivity mri classification of autism: Abide results. Front Human Neurosci 7:599. https://doi.org/10.3389/fnhum.2013.00599

    Article  Google Scholar 

  41. Tyszka JM, Kennedy DP, Paul LK, Adolphs R (2014) Largely typical patterns of resting- state functional connectivity in high-functioning adults with autism. Cereb Cortex 24(7):1894–1905. https://doi.org/10.1093/cercor/bht040

    Article  PubMed  Google Scholar 

  42. Moseley R, Ypma R, Holt R, Floris D, Chura L, Spencer MD, Rubinov M (2015) Whole- brain functional hypoconnectivity as an endophenotype of autism in adolescents. Neuroimage 9:140–152. https://doi.org/10.1016/j.nicl.2015.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo X, Dominick KC, Minai AA, Li H, Erickson CA, Lu LJ (2017) Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front Neurosci 11:460. https://doi.org/10.3389/fnins.2017.00460

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fishman I, Linke AC, Hau J, Carper RA, Müller R-A (2018) Atypical functional connectivity of amygdala related to reduced symptom severity in children with autism. J Am Acad Child Adolesc Psychiatry 57(10):764–774. https://doi.org/10.1016/j.jaac.2018.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  45. Odriozola P, Dajani DR, Burrows CA, Gabard-Durnam LJ, Goodman E, Baez AC, Gee DG (2019) Atypical frontoamygdala functional connectivity in youth with autism. Develop Cognitive Neurosci 37:100603. https://doi.org/10.1016/j.dcn.2018.12.001

    Article  Google Scholar 

  46. Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RS (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2(4):189–210. https://doi.org/10.1002/hbm.460020402

    Article  Google Scholar 

  47. Supekar K, Musen M, Menon V (2009) Development of large-scale functional brain networks in children. PLoS Biol 7(7):e1000157. https://doi.org/10.1371/journal.pbio.1000157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun JW, Fan R, Wang Q, Wang QQ, Jia XZ, Ma HB (2021) Identify abnormal functional connectivity of resting state networks in Autism spectrum disorder and apply to machine learning-based classification. Brain Res 1757:147299. https://doi.org/10.1016/j.brainres.2021.147299

    Article  CAS  PubMed  Google Scholar 

  49. Zhang J, Feng F, Han T, Gong X, Duan F (2022) Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning. Cognitive Comput. https://doi.org/10.1007/s12559-021-09981-z

    Article  Google Scholar 

  50. Yang X, Zhang N, Schrader P (2022) A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity. Mach Learn Appl 8:100290. https://doi.org/10.1016/j.mlwa.2022.100290

    Article  Google Scholar 

  51. Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, Milham MP (2014) The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19(6):659–667. https://doi.org/10.1038/mp.2013.78

    Article  PubMed  Google Scholar 

  52. Hossin M, Sulaiman MN (2015) A review on evaluation metrics for data classification evaluations. Int J Data Mining Knowledge Manag Process 5(2):1. https://doi.org/10.5121/ijdkp.2015.5201

    Article  Google Scholar 

  53. Aghdam MA, Sharifi A, Pedram MM (2018) Combination of rs-fmri and smri data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging 31(6):895–903. https://doi.org/10.1007/s10278-018-0093-8

    Article  Google Scholar 

  54. Dekhil O, Ali M, El-Nakieb Y, Shalaby A, Soliman A, Switala A et al (2019) A personalized autism diagnosis cad system using a fusion of structural mri and resting-state functional mri data. Front Psychiatry. https://doi.org/10.3389/fpsyt.2019.00392

    Article  PubMed  PubMed Central  Google Scholar 

  55. Suzuki K, Armato SG III, Li F, Sone S, Doi K (2003) Massive training artificial neural network (mtann) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography. Med Phys 30(7):1602–1617. https://doi.org/10.1118/1.1580485

    Article  PubMed  Google Scholar 

  56. Shen W, Zhou M, Yang F, Yu D, Dong D, Yang C, Tian J (2017) Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recogn 61:663–673. https://doi.org/10.1016/j.patcog.2016.05.029

    Article  Google Scholar 

  57. Wang S-H, Zhang Y, Cheng X, Zhang X, Zhang Y-D (2021) Psspnn: Patchshuffle stochastic pooling neural network for an explainable diagnosis of covid-19 with multiple-way data augmentation. Comput Math Methods Med. https://doi.org/10.1155/2021/6633755

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amandeep Kaur.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, P., Kaur, A. Review of Progress in Diagnostic Studies of Autism Spectrum Disorder Using Neuroimaging. Interdiscip Sci Comput Life Sci 15, 111–130 (2023). https://doi.org/10.1007/s12539-022-00548-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-022-00548-6

Keywords

Navigation