Skip to main content

Advertisement

Log in

Enhanced Evolutionary Feature Selection and Ensemble Method for Cardiovascular Disease Prediction

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Cardiovascular Disease (CVD) is one among the main factors for the increase in mortality rate worldwide. The analysis and prediction of this disease is yet a highly formidable task in medical data analysis. Recent advancements in technology such as Big Data, Artificial Intelligence and the need for automated models have paved the way for developing a more reliable and efficient model for predicting heart disease. Several researches have been carried out in predicting heart diseases but the focus on choosing the important attributes that play a significant role in predicting CVD is inadequate. Hence the choice of right features for the classification and the diagnosis of the heart disease is important. The core aim of this work is to identify and select the important features and machine learning methodologies that can enhance the prediction capability of the classification models for accurately predicting CVD. The results show that the proposed enhanced evolutionary feature selection with the hybrid ensemble model outperforms the existing approaches in terms of precision, recall and accuracy. The experimental outcomes show that the proposed approach attains the maximum classification accuracy of 93.65% for statlog dataset, 82.81% for SPECTF dataset and 84.95% for coronary heart disease dataset. The proposed classification model performance is demonstrated using ROC curve against state-of-the-art methods in machine learning.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Antoniadis A, Lambert-Lacroix S, Leblanc F (2003) Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 19(5):563–570. https://doi.org/10.1093/bioinformatics/btg062

    Article  CAS  PubMed  Google Scholar 

  2. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1):389–422. https://doi.org/10.1023/A:1012487302797

    Article  Google Scholar 

  3. Yu JS, Ongarello S, Fiedler R, Chen XW, Toffolo G, Cobelli C, Trajanoski Z (2005) Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data. Bioinformatics 21(10):2200–2209. https://doi.org/10.1093/bioinformatics/bti370

    Article  CAS  PubMed  Google Scholar 

  4. Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–1437. https://doi.org/10.1109/TPAMI.2004.105

    Article  PubMed  Google Scholar 

  5. Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med 112:103375. https://doi.org/10.1016/j.compbiomed.2019.103375

    Article  CAS  PubMed  Google Scholar 

  6. Tallón-Ballesteros AJ, Correia L, Xue B (2018) Featuring the attributes in supervised machine learning. In: International conference on hybrid artificial intelligence systems. Springer, Cham, pp 350–362. https://doi.org/10.1007/978-3-319-92639-1_29

  7. Garcia VHM, Rodriguez JR, Usaquén MAO (2018) A comparative study between feature selection algorithms. In: International conference on data mining and big data. Springer, Cham, pp 65–76. https://doi.org/10.1007/978-3-319-93803-5_7

  8. Jain D, Singh V (2018) Feature selection and classification systems for chronic disease prediction: a review. Egyptian Inform J 19(3):179–189. https://doi.org/10.1016/j.eij.2018.03.002

    Article  Google Scholar 

  9. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science 349(6245):255–260

    Article  CAS  PubMed  Google Scholar 

  10. Gavhane A, Kokkula G, Pandya I, Devadkar K (2018) Prediction of heart disease using machine learning. In: 2018 second international conference on electronics, communication and aerospace technology (ICECA) (pp 1275–1278). IEEE. https://doi.org/10.1109/ICECA.2018.8474922

  11. Repaka AN, Ravikanti SD, Franklin RG (2019) Design and implementing heart disease prediction using Naives Bayesian. In: 2019 3rd International conference on trends in electronics and informatics (ICOEI) (pp 292–297). IEEE. https://doi.org/10.1109/ICOEI.2019.8862604

  12. Babu S, Vivek EM, Famina KP, Fida K, Aswathi P, Shanid M, Hena M (2017) Heart disease diagnosis using data mining technique. In: 2017 international conference of electronics, communication and aerospace technology (ICECA) Vol. 1. pp 750–753. IEEE. https://doi.org/10.1109/ICECA.2017.8203643

  13. Parthiban G, Srivatsa SK (2012) Applying machine learning methods in diagnosing heart disease for diabetic patients. Int J Appl Inf Syst 3(7):25–30. https://doi.org/10.5120/ijais12-450593

    Article  Google Scholar 

  14. Tan KC, Teoh EJ, Yu Q, Goh KC (2009) A hybrid evolutionary algorithm for attribute selection in data mining. Expert Syst Appl 36(4):8616–8630

    Article  Google Scholar 

  15. Ordonez C (2006) Association rule discovery with the train and test approach for heart disease prediction. IEEE Trans Inf Technol Biomed 10(2):334–343

    Article  PubMed  Google Scholar 

  16. Rairikar, A, Kulkarni V, Sabale V, Kale H, Lamgunde A (2017) Heart disease prediction using data mining techniques. In: 2017 International conference on intelligent computing and control (I2C2) (pp 1–8). IEEE. https://doi.org/10.1109/I2C2.2017.8321771

  17. Nahiduzzaman M, Nayeem MJ, Ahmed MT, Zaman MSU (2019) Prediction of heart disease using multi-layer perceptron neural network and support vector machine. In: 2019 4th International conference on electrical information and communication technology (EICT) (pp 1–6). IEEE. https://doi.org/10.1109/EICT48899.2019.9068755

  18. Nahar J, Imam T, Tickle KS, Chen YPP (2013) Computational intelligence for heart disease diagnosis: a medical knowledge driven approach. Expert Syst Appl 40(1):96–104

    Article  Google Scholar 

  19. Dutta A, Batabyal T, Basu M, Acton ST (2020) An efficient convolutional neural network for coronary heart disease prediction. Expert Syst Appl 159:113408

    Article  Google Scholar 

  20. Tougui I, Jilbab A, El Mhamdi J (2020) Heart disease classification using data mining tools and machine learning techniques. Heal Technol 10:1137–1144. https://doi.org/10.1007/s12553-020-00438-1

    Article  Google Scholar 

  21. Uyar K, İlhan A (2017) Diagnosis of heart disease using genetic algorithm based trained recurrent fuzzy neural networks. Procedia Comput Sci 120:588–593. https://doi.org/10.1016/j.procs.2017.11.283

    Article  Google Scholar 

  22. Pathak AK, Valan JA (2020) A predictive model for heart disease diagnosis using fuzzy logic and decision tree. In: Smart computing paradigms: new progresses and challenges. Springer, Singapore, pp 131–140. https://doi.org/10.1007/978-981-13-9680-9_10

  23. Baitharu TR, Pani SK (2016) Analysis of data mining techniques for healthcare decision support system using liver disorder dataset. Procedia Comput Sci 85:862–870

    Article  Google Scholar 

  24. Bouaziz F, Boutana D, Oulhadj H (2018) Diagnostic of ECG arrhythmia using wavelet analysis and K-nearest neighbor algorithm. In: 2018 International conference on applied smart systems (ICASS) (pp 1–6). IEEE. https://doi.org/10.1109/ICASS.2018.8652020

  25. Sharma P, Saxena K (2017) Application of fuzzy logic and genetic algorithm in heart disease risk level prediction. Int J Syst Assur Eng Manag 8(2):1109–1125. https://doi.org/10.1007/s13198-017-0578-8

    Article  Google Scholar 

  26. Tripathi D, Edla DR, Cheruku R, Kuppili V (2019) A novel hybrid credit scoring model based on ensemble feature selection and multilayer ensemble classification. Comput Intell 35(2):371–394

    Article  Google Scholar 

  27. Tripathi D, Edla DR, Cheruku R (2018) Hybrid credit scoring model using neighborhood rough set and multi-layer ensemble classification. J Intell Fuzzy Syst 34(3):1543–1549

    Article  Google Scholar 

  28. Balogun AO, Basri S, Abdulkadir SJ, Hashim AS (2019) Performance analysis of feature selection methods in software defect prediction: a search method approach. Appl Sci 9(13):2764

    Article  Google Scholar 

  29. Akintola AG, Balogun A, Lafenwa-Balogun FB, Mojeed HA (2018) Comparative analysis of selected heterogeneous classifiers for software defects prediction using filter-based feature selection methods. FUOYE J Eng Technol. https://doi.org/10.46792/fuoyejet.v3i1.178

    Article  Google Scholar 

  30. Balogun AO, Basri S, Mahamad S, Abdulkadir SJ, Almomani MA, Adeyemo VE et al (2020) Impact of feature selection methods on the predictive performance of software defect prediction models: an extensive empirical study. Symmetry 12(7):1147. https://doi.org/10.3390/sym12071147

    Article  Google Scholar 

  31. Kolukisa B, Yavuz L, Soran A, Bakir-Gungor B, Tuncer D, Onen A, Gungor VC (2020) Coronary artery disease diagnosis using optimized adaptive ensemble machine learning algorithm. Int J Biosci Biochem Bioinf. https://doi.org/10.17706/ijbbb.2020.10.1.58-65

    Article  Google Scholar 

  32. Latha CBC, Jeeva SC (2019) Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Inf Med Unlocked 16:100203. https://doi.org/10.1016/j.imu.2019.100203

    Article  Google Scholar 

  33. Harvey HB, Sotardi ST (2018) The Pareto principle. J Am College Radiol 15(6):931. https://doi.org/10.1016/j.jacr.2018.02.026

    Article  Google Scholar 

  34. Nenavath H, Jatoth RK (2018) Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput 62:1019–1043. https://doi.org/10.1016/j.asoc.2017.09.039

    Article  Google Scholar 

  35. Djellali H, Guessoum S, Ghoualmi-Zine N, Layachi S (2017) Fast correlation based filter combined with genetic algorithm and particle swarm on feature selection. In: 2017 5th International conference on electrical engineering-boumerdes (ICEE-B) (pp 1–6). IEEE. https://doi.org/10.1109/ICEE-B.2017.8192090

  36. Radovic M, Ghalwash M, Filipovic N, Obradovic Z (2017) Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinform 18(1):1–14. https://doi.org/10.1186/s12859-016-1423-9

    Article  Google Scholar 

  37. Wu Z, Dong YN, Wei HL, Tian W (2020) Consistency measure based simultaneous feature selection and instance purification for multimedia traffic classification. Comput Netw 173:107190. https://doi.org/10.1016/j.comnet.2020.107190

    Article  Google Scholar 

  38. Zhang G, Hou J, Wang J, Yan C, Luo J (2020) Feature selection for microarray data classification using hybrid information gain and a modified binary Krill Herd Algorithm. Interdiscip Sci 12:288–301. https://doi.org/10.1007/s12539-020-00372-w

    Article  CAS  PubMed  Google Scholar 

  39. Shi S, Li G, Chen H, Liu J, Hu Y, Xing L, Hu W (2017) Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter. Appl Therm Eng 112:698–706. https://doi.org/10.1016/j.applthermaleng.2016.10.043

    Article  Google Scholar 

  40. Zaffar M, Hashmani MA, Savita KS (2018) Comparing the performance of FCBF, Chi-Square and relief-F filter feature selection algorithms in educational data mining. In: International conference of reliable information and communication technology. Springer, Cham, pp 151–160. https://doi.org/10.1007/978-3-319-99007-1_15

  41. Sharma S, Jain A (2020) An empirical evaluation of correlation based feature selection for tweet sentiment classification. In: Advances in cybernetics, cognition, and machine learning for communication technologies. Springer, Singapore, pp 199–208. https://doi.org/10.1007/978-981-15-3125-5_22

  42. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  Google Scholar 

  43. Kostrzewa D, Brzeski R (2017) The data dimensionality reduction in the classification process through greedy backward feature elimination. In: International Conference on Man–Machine Interactions. Springer, Cham, pp 397–407. https://doi.org/10.1007/978-3-319-67792-7_39

  44. Lu H, Chen J, Yan K, Jin Q, Xue Y, Gao Z (2017) A hybrid feature selection algorithm for gene expression data classification. Neurocomputing 256:56–62

    Article  Google Scholar 

  45. Darst BF, Malecki KC, Engelman CD (2018) Using recursive feature elimination in random forest to account for correlated variables in high dimensional data. BMC Genet 19(1):1–6. https://doi.org/10.1186/s12863-018-0633-8

    Article  CAS  Google Scholar 

  46. Rodriguez-Galiano VF, Luque-Espinar JA, Chica-Olmo M, Mendes MP (2018) Feature selection approaches for predictive modelling of groundwater nitrate pollution: an evaluation of filters, embedded and wrapper methods. Sci Total Environ 624:661–672. https://doi.org/10.1016/j.scitotenv.2017.12.152

    Article  CAS  PubMed  Google Scholar 

  47. Hu R, Zhu X, Zhu Y, Gan J (2020) Robust SVM with adaptive graph learning. World Wide Web 23(3):1945–1968

    Article  Google Scholar 

  48. Chen CW, Tsai YH, Chang FR, Lin WC (2020) Ensemble feature selection in medical datasets: combining filter, wrapper, and embedded feature selection results. Expert Syst 37(5):e12553

    Article  Google Scholar 

  49. Antony Rosewelt L, Arokia Renjit J (2020) A content recommendation system for effective e-learning using embedded feature selection and fuzzy DT based CNN. J Intell Fuzzy Syst. https://doi.org/10.3233/JIFS-191721 (Preprint)

    Article  Google Scholar 

  50. Choi SH, Jung HY, Kim H (2019) Ridge fuzzy regression model. Int J Fuzzy Syst 21(7):2077–2090. https://doi.org/10.1007/s40815-019-00692-0

    Article  Google Scholar 

  51. Spencer B, Alfandi O, Al-Obeidat F (2018) A refinement of lasso regression applied to temperature forecasting. Procedia Comput Sci 130:728–735. https://doi.org/10.1016/j.procs.2018.04.127

    Article  Google Scholar 

  52. Guha R, Ghosh M, Kapri S, Shaw S, Mutsuddi S, Bhateja V, Sarkar R (2019) Deluge based Genetic Algorithm for feature selection. Evol Intel. https://doi.org/10.1007/s12065-019-00218-5

    Article  Google Scholar 

  53. Stripling E, vanden Broucke S, Antonio K, Baesens B, Snoeck M (2018) Profit maximizing logistic model for customer churn prediction using genetic algorithms. Swarm Evol Comput 40:116–130. https://doi.org/10.1016/j.swevo.2017.10.010

    Article  Google Scholar 

  54. Amirkhani A, Mosavi MR, Mohammadi K, Papageorgiou EI (2018) A novel hybrid method based on fuzzy cognitive maps and fuzzy clustering algorithms for grading celiac disease. Neural Comput Appl 30(5):1573–1588. https://doi.org/10.1007/s00521-016-2765-y

    Article  Google Scholar 

  55. Ghasemiyeh R, Moghdani R, Sana SS (2017) A hybrid artificial neural network with metaheuristic algorithms for predicting stock price. Cybern Syst 48(4):365–392. https://doi.org/10.1080/01969722.2017.1285162

    Article  Google Scholar 

  56. Baioletti M, Milani A, Santucci V (2017) A new precedence-based ant colony optimization for permutation problems. In: Asia-Pacific conference on simulated evolution and learning. Springer, Cham, pp 960–971. https://doi.org/10.1007/978-3-319-68759-9_79

  57. Moslehi F, Haeri A (2020) A novel hybrid wrapper–filter approach based on genetic algorithm, particle swarm optimization for feature subset selection. J Ambient Intell Humaniz Comput 11(3):1105–1127. https://doi.org/10.1007/s12652-019-01364-5

    Article  Google Scholar 

  58. Benouini R, Batioua I, Ezghari S, Zenkouar K, Zahi A (2019) Fast feature selection algorithm for neighborhood rough set model based on Bucket and Trie structures. Granular Comput. https://doi.org/10.1007/s41066-019-00162-w

    Article  Google Scholar 

  59. Malik AJ, Khan FA (2018) A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection. Clust Comput 21(1):667–680. https://doi.org/10.1007/s10586-017-0971-8

    Article  Google Scholar 

  60. Chakraborty T, Banik SK, Bhadra AK, Nandi D (2021) Dynamically learned PSO based neighborhood influenced fuzzy c-means for pre-treatment and post-treatment organ segmentation from CT images. Comput Methods Programs Biomed 202:105971. https://doi.org/10.1016/j.cmpb.2021.105971

    Article  PubMed  Google Scholar 

  61. Wang L, Ni H, Yang R, Pappu V, Fenn MB, Pardalos PM (2014) Feature selection based on meta-heuristics for biomedicine. Optim Methods Software 29(4):703–719. https://doi.org/10.1080/10556788.2013.834900

    Article  Google Scholar 

  62. Da Silva SF, Ribeiro MX, Neto JDEB, Traina-Jr C, Traina AJ (2011) Improving the ranking quality of medical image retrieval using a genetic feature selection method. Decis Support Syst 51(4):810–820. https://doi.org/10.1016/j.dss.2011.01.015

    Article  Google Scholar 

  63. Sharaff A, Gupta H (2019) Extra-tree classifier with metaheuristics approach for email classification. In: Advances in computer communication and computational sciences. Springer, Singapore, pp 189–197. https://doi.org/10.1007/978-981-13-6861-5_17

  64. Sayed S, Nassef M, Badr A, Farag I (2019) A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets. Expert Syst Appl 121:233–243. https://doi.org/10.1016/j.eswa.2018.12.022

    Article  Google Scholar 

  65. Leardi R, Boggia R, Terrile M (1992) Genetic algorithms as a strategy for feature selection. J Chemom 6(5):267–281

    Article  CAS  Google Scholar 

  66. Das AK, Pati SK, Ghosh A (2020) Relevant feature selection and ensemble classifier design using bi-objective genetic algorithm. Knowl Inf Syst 62(2):423–455. https://doi.org/10.1007/s10115-019-01341-6

    Article  Google Scholar 

  67. Tyagi S, Mittal S (2020) Sampling approaches for imbalanced data classification problem in machine learning. In: Proceedings of ICRIC 2019. Springer, Cham, pp 209–221. https://doi.org/10.1007/978-3-030-29407-6_17

  68. Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Mach Learn 40(2):139–157

    Article  Google Scholar 

  69. Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6(3):21–45

    Article  Google Scholar 

  70. Ribeiro VHA, Reynoso-Meza G (2020) Ensemble learning by means of a multi-objective optimization design approach for dealing with imbalanced data sets. Expert Syst Appl 147:113232. https://doi.org/10.1016/j.eswa.2020.113232

    Article  Google Scholar 

  71. Galar M, Fernandez A, Barrenechea E, Bustince H, Herrera F (2011) A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans Syst Man Cybernet Part C (Applications and Reviews) 42(4):463–484

    Article  Google Scholar 

  72. Bryll R, Gutierrez-Osuna R, Quek F (2003) Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recogn 36(6):1291–1302

    Article  Google Scholar 

  73. Bartlett P, Freund Y, Lee WS, Schapire RE (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Stat 26(5):1651–1686

    Article  Google Scholar 

  74. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139. https://doi.org/10.1006/jcss.1997.1504

    Article  Google Scholar 

  75. Shahraki A, Abbasi M, Haugen Ø (2020) Boosting algorithms for network intrusion detection: a comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng Appl Artif Intell 94:103770. https://doi.org/10.1016/j.engappai.2020.103770

    Article  Google Scholar 

  76. Rätsch G, Onoda T, Müller KR (2001) Soft margins for AdaBoost. Mach Learn 42(3):287–320

    Article  Google Scholar 

  77. Palit I, Reddy CK (2011) Scalable and parallel boosting with mapreduce. IEEE Trans Knowl Data Eng 24(10):1904–1916

    Article  Google Scholar 

  78. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Article  Google Scholar 

  79. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  80. Zhong Y, Yang H, Zhang Y, Li P (2020) Online random forests regression with memories. Knowl-Based Syst 201:106058. https://doi.org/10.1016/j.knosys.2020.106058

    Article  Google Scholar 

  81. Han T, Jiang D, Zhao Q, Wang L, Yin K (2018) Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery. Trans Inst Meas Control 40(8):2681–2693

    Article  Google Scholar 

  82. Bahad P, Saxena P (2020) Study of adaboost and gradient boosting algorithms for predictive analytics. In: International conference on intelligent computing and smart communication 2019. Springer, Singapore, pp 235–244. https://doi.org/10.1007/978-981-15-0633-8_22

  83. Natekin A, Knoll A (2013) Gradient boosting machines, a tutorial. Front Neurorobot 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chen J, Zhao F, Sun Y, Yin Y (2020) Improved XGBoost model based on genetic algorithm. Int J Comput Appl Technol 62(3):240–245. https://doi.org/10.1504/IJCAT.2020.106571

    Article  Google Scholar 

  85. Sun X, Liu M, Sima Z (2020) A novel cryptocurrency price trend forecasting model based on LightGBM. Financ Res Lett 32:101084. https://doi.org/10.1016/j.frl.2018.12.032

    Article  Google Scholar 

  86. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42

    Article  Google Scholar 

  87. Pinto A, Pereira S, Rasteiro D, Silva CA (2018) Hierarchical brain tumour segmentation using extremely randomized trees. Pattern Recogn 82:105–117. https://doi.org/10.1016/j.patcog.2018.05.006

    Article  Google Scholar 

  88. Sharif M, Amin J, Raza M, Anjum MA, Afzal H, Shad SA (2020) Brain tumor detection based on extreme learning. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04679-8

    Article  Google Scholar 

  89. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR et al (2017) Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg 12(2):183–203

    Article  PubMed  Google Scholar 

  90. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  91. Jiang T, Li J, Zheng Y, Sun C (2011) Improved bagging algorithm for pattern recognition in UHF signals of partial discharges. Energies 4(7):1087–1101

    Article  Google Scholar 

  92. Panda D, Dash SR (2020) Predictive system: comparison of classification techniques for effective prediction of heart disease. In: Smart intelligent computing and applications. Springer, Singapore, pp 203–213. https://doi.org/10.1007/978-981-13-9282-5_19

  93. Kurgan LA, Cios KJ, Tadeusiewicz R, Ogiela M, Goodenday LS (2001) Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif Intell Med 23(2):149–169

    Article  CAS  PubMed  Google Scholar 

  94. Dhankhar A, Jain S (2021) Prediction of disease using machine learning algorithms. Smart Sustain Intell Syst. https://doi.org/10.1002/9781119752134.ch8

    Article  Google Scholar 

  95. Verma AK, Pal S, Kumar S (2020) Prediction of skin disease using ensemble data mining techniques and feature selection method—a comparative study. Appl Biochem Biotechnol 190(2):341–359. https://doi.org/10.1007/s12010-019-03093-z

    Article  CAS  PubMed  Google Scholar 

  96. Cateni S, Colla V, Vannucci M (2014) A hybrid feature selection method for classification purposes. In: 2014 European Modelling Symposium (pp 39–44). IEEE. https://doi.org/10.1109/EMS.2014.44

  97. Khaire UM, Dhanalakshmi R (2019) Stability of feature selection algorithm: a review. J King Saud Univ-Comput Inf Sci. https://doi.org/10.1016/j.jksuci.2019.06.012

    Article  Google Scholar 

  98. Edla DR, Tripathi D, Cheruku R, Kuppili V (2018) An efficient multi-layer ensemble framework with BPSOGSA-based feature selection for credit scoring data analysis. Arab J Sci Eng 43(12):6909–6928. https://doi.org/10.1007/s13369-017-2905-4

    Article  CAS  Google Scholar 

  99. Aher CN, Jena AK (2020) Rider-chicken optimization dependent recurrent neural network for cancer detection and classification using gene expression data. Comput Methods Biomech Biomed Eng. https://doi.org/10.1080/21681163.2020.1830436

    Article  Google Scholar 

  100. Mirjalili S, Mirjalili SM, Yang XS (2014) Binary bat algorithm. Neural Comput Appl 25(3):663–681

    Article  Google Scholar 

  101. Lee SH (2015) Feature selection based on the center of gravity of BSWFMs using NEWFM. Eng Appl Artif Intell 45:482–487

    Article  Google Scholar 

  102. Smith MC, Barber PA, Stinear CM (2017) The TWIST algorithm predicts time to walking independently after stroke. Neurorehabil Neural Repair 31(10–11):955–964. https://doi.org/10.1177/1545968317736820

    Article  PubMed  Google Scholar 

  103. Tomar D, Agarwal S (2014) Feature selection based least square twin support vector machine for diagnosis of heart disease. Int J Bio-Sci Bio-Technol 6(2):69–82

    Article  Google Scholar 

  104. Liu X, Wang X, Su Q, Zhang M, Zhu Y, Wang Q, Wang Q (2017) A hybrid classification system for heart disease diagnosis based on the RFRS method. Comput Math Methods Med 2017:1–11

    Google Scholar 

  105. Polat K, Güneş S (2009) A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Syst Appl 36(7):10367–10373

    Article  Google Scholar 

  106. Kahramanli H, Allahverdi N (2008) Design of a hybrid system for the diabetes and heart diseases. Expert Syst Appl 35(1–2):82–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Jothi Prakash.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jothi Prakash, V., Karthikeyan, N.K. Enhanced Evolutionary Feature Selection and Ensemble Method for Cardiovascular Disease Prediction. Interdiscip Sci Comput Life Sci 13, 389–412 (2021). https://doi.org/10.1007/s12539-021-00430-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00430-x

Keywords

Navigation