Skip to main content

Advertisement

Log in

Comprehensive Analysis of Long Non-coding RNA-Associated Competing Endogenous RNA Network in Duchenne Muscular Dystrophy

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is one of the most severe neuromuscular disorders. Long non-coding RNAs (lncRNAs) are a group of non-coding transcripts, which could regulate messenger RNA (mRNA) by binding the mutual miRNAs, thus acting as competing endogenous RNAs (ceRNAs). So far, the role of lncRNA in DMD pathogenesis remains unclear. In the current study, expression profile from a total of 33 DMD patients and 12 healthy people were downloaded from Gene Expression Omnibus (GEO) database (GSE38417 and GSE109178). Differentially expressed (DE) lncRNAs were discovered and targeted mRNAs were predicted. The ceRNA network of lncRNAs—miRNAs—mRNAs was then constructed. Genome Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the putative mRNAs in the ceRNA network were performed through Database for Annotation, Visualization and Integration Discovery (DAVID) website. Topological property of the network was analyzed using Cytoscape to disclose the hub lncRNAs. According to our assessments, 19 common DElncRNAs and 846 common DEmRNAs were identified in DMD compared to controls. The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. In conclusion, our latest bioinformatic analysis demonstrated that lncRNA is likely involved in DMD. This work highlights the importance of lncRNA and provides new insights for exploring the molecular mechanism of DMD.

Graphic abstract

The created ceRNA network contained 6 lncRNA nodes, 69 mRNA nodes, 27 miRNA nodes and 102 edges, while four hub lncRNAs (XIST, AL132709, LINC00310, ALDH1L1-AS2) were uncovered. Remarkably, KEGG analysis indicated that targeted mRNAs in the network were mainly enriched in “microRNAs in cancer” and “proteoglycans in cancer”. Our study may offer novel perspectives on the pathogenesis of DMD from the point of lncRNAs. This work might be also conducive for exploring the molecular mechanism of increased incidence of tumorigenesis reported in DMD patients and experimental models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sun C, Serra C, Lee G, Wagner KR (2020) Stem cell-based therapies for Duchenne muscular dystrophy. Exp Neurol 323:113086. https://doi.org/10.1016/j.expneurol.2019.113086

    Article  CAS  PubMed  Google Scholar 

  2. Anand A, Tyagi R, Mohanty M, Goyal M, Silva KRDD, Wijekoon N (2015) Dystrophin induced cognitive impairment: mechanisms, models and therapeutic strategies. Ann Neurosci 22(2):108–118. https://doi.org/10.5214/ans.0972.7531.221210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verhaart IEC, Aartsma-Rus A (2019) Therapeutic developments for Duchenne muscular dystrophy. Nat Rev Neurol 15(7):373–386. https://doi.org/10.1038/s41582-019-0203-3

    Article  PubMed  Google Scholar 

  4. Haslett JN, Sanoudou D, Kho AT, Bennett RR, Greenberg SA, Kohane IS, Beggs AH, Kunkel LM (2002) Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. Proc Natl Acad Sci U S A 99(23):15000–15005. https://doi.org/10.1073/pnas.192571199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boscolo Sesillo F, Fox D, Sacco A (2019) Muscle stem cells give rise to rhabdomyosarcomas in a severe mouse model of duchenne muscular dystrophy. Cell Rep 26(3):689–701e686. https://doi.org/10.1016/j.celrep.2018.12.089

    Article  CAS  PubMed  Google Scholar 

  6. Hosur V, Kavirayani A, Riefler J, Carney LM, Lyons B, Gott B, Cox GA, Shultz LD (2012) Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma. Cancer Genet 205(5):232–241. https://doi.org/10.1016/j.cancergen.2012.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fathizadeh H, Hayat SMG, Dao S, Ganbarov K, Tanomand A, Asgharzadeh M, Kafil HS (2020) Long non-coding RNA molecules in tuberculosis. Int J Biol Macromol 156:340–346. https://doi.org/10.1016/j.ijbiomac.2020.04.030

    Article  CAS  PubMed  Google Scholar 

  8. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3):353–358. https://doi.org/10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang W, Lou W, Ding B, Yang B, Lu H, Kong Q, Fan W (2019) A novel mRNA-miRNA-lncRNA competing endogenous RNA triple sub-network associated with prognosis of pancreatic cancer. Aging (Albany NY) 11(9):2610–2627. https://doi.org/10.18632/aging.101933

    Article  CAS  Google Scholar 

  10. Zhou M, Lu B, Tan W, Fu M (2020) Identification of lncRNA-miRNA-mRNA regulatory network associated with primary open angle glaucoma. BMC Ophthalmol 20(1):104. https://doi.org/10.1186/s12886-020-01365-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jung HJ, Kim H-J, Park K-K (2020) Potential roles of long noncoding RNAs as therapeutic targets in renal fibrosis. Int J Mol Sci 21(8):2698. https://doi.org/10.3390/ijms21082698

    Article  CAS  PubMed Central  Google Scholar 

  12. Zhong XL, Wang L, Yan X, Yang XK, Xiu H, Zhao M, Wang XN, Liu JX (2020) MiR-20a acted as a ceRNA of lncRNA PTENPL and promoted bladder cancer cell proliferation and migration by regulating PDCD4. Eur Rev Med Pharmacol Sci 24(6):2955–2964. https://doi.org/10.26355/eurrev_202003_20660

    Article  PubMed  Google Scholar 

  13. Liu Z, Wang X, Yang G, Zhong C, Zhang R, Ye J, Zhong Y, Hu J, Ozal B, Zhao S (2020) Construction of lncRNA-associated ceRNA networks to identify prognostic lncRNA biomarkers for glioblastoma. J Cell Biochem 121(7):3502–3515. https://doi.org/10.1002/jcb.29625

    Article  CAS  PubMed  Google Scholar 

  14. Chi LM, Wang LP, Jiao D (2019) Identification of differentially expressed genes and long noncoding RNAs associated with Parkinson's disease. Parkinsons Dis 2019:6078251. https://doi.org/10.1155/2019/6078251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma N, Tie C, Yu B, Zhang W, Wan J (2020) Identifying lncRNA-miRNA-mRNA networks to investigate Alzheimer's disease pathogenesis and therapy strategy. Aging (Albany NY) 12(3):2897–2920. https://doi.org/10.18632/aging.102785

    Article  CAS  Google Scholar 

  16. Wang L, Cho KB, Li Y, Tao G, Xie Z, Guo B (2019) Long noncoding RNA (lncRNA)-mediated competing endogenous RNA networks provide novel potential biomarkers and therapeutic targets for colorectal cancer. Int J Mol Sci. https://doi.org/10.3390/ijms20225758

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147(2):358–369. https://doi.org/10.1016/j.cell.2011.09.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bovolenta M, Erriquez D, Valli E, Brioschi S, Scotton C, Neri M, Falzarano MS, Gherardi S, Fabris M, Rimessi P, Gualandi F, Perini G, Ferlini A (2012) The DMD locus harbors multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS ONE 7(9):e45328. https://doi.org/10.1371/journal.pone.0045328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang X, Sun S, Pu JK, Tsang AC, Lee D, Man VO, Lui WM, Wong ST, Leung GK (2012) Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol Dis 48(1):1–8. https://doi.org/10.1016/j.nbd.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  20. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 696:291–303. https://doi.org/10.1007/978-1-60761-987-1_18

    Article  CAS  PubMed  Google Scholar 

  21. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14(11):699–712. https://doi.org/10.1038/nrm3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dey BK, Pfeifer K, Dutta A (2014) The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28(5):491–501. https://doi.org/10.1101/gad.234419.113

    Article  PubMed  PubMed Central  Google Scholar 

  23. Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V (2006) The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell 11(4):547–560. https://doi.org/10.1016/j.devcel.2006.08.003

    Article  CAS  PubMed  Google Scholar 

  24. Twayana S, Legnini I, Cesana M, Cacchiarelli D, Morlando M, Bozzoni I (2013) Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy. Biochem Soc Trans 41(4):844–849. https://doi.org/10.1042/BST20120353

    Article  CAS  PubMed  Google Scholar 

  25. Loda A, Heard E (2019) Xist RNA in action: Past, present, and future. PLoS Genet 15(9):e1008333. https://doi.org/10.1371/journal.pgen.1008333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Creamer KM, Lawrence JB (2017) XIST RNA: a window into the broader role of RNA in nuclear chromosome architecture. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0360

    Article  PubMed  PubMed Central  Google Scholar 

  27. Viggiano E, Ergoli M, Picillo E, Politano L (2016) Determining the role of skewed X-chromosome inactivation in developing muscle symptoms in carriers of Duchenne muscular dystrophy. Hum Genet 135(7):685–698. https://doi.org/10.1007/s00439-016-1666-6

    Article  CAS  PubMed  Google Scholar 

  28. Eisen B, Ben Jehuda R, Cuttitta AJ, Mekies LN, Shemer Y, Baskin P, Reiter I, Willi L, Freimark D, Gherghiceanu M, Monserrat L, Scherr M, Hilfiker-Kleiner D, Arad M, Michele DE, Binah O (2019) Electrophysiological abnormalities in induced pluripotent stem cell-derived cardiomyocytes generated from Duchenne muscular dystrophy patients. J Cell Mol Med 23(3):2125–2135. https://doi.org/10.1111/jcmm.14124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Han J, Shen X (2020) Long noncoding RNAs in osteosarcoma via various signaling pathways. J Clin Lab Anal. https://doi.org/10.1002/jcla.23317

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li J, Peng W, Du L, Yang Q, Wang C, Mo YY (2018) The oncogenic potentials and diagnostic significance of long non-coding RNA LINC00310 in breast cancer. J Cell Mol Med 22(9):4486–4495. https://doi.org/10.1111/jcmm.13750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patel KD, Vora HH, Trivedi TI, Patel JB, Pandya SJ, Jetly DH, Patel PS (2020) Transcriptome profiling and pathway analysis in squamous cell carcinoma of buccal mucosa. Exp Mol Pathol 113:104378. https://doi.org/10.1016/j.yexmp.2020.104378

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Zhang Y (2020) lncRNA ZFAS1 improves neuronal injury and inhibits inflammation, oxidative stress, and apoptosis by sponging miR-582 and upregulating NOS3 expression in cerebral ischemia/reperfusion injury. Inflammation. https://doi.org/10.1007/s10753-020-01212-1

    Article  PubMed  Google Scholar 

  33. Deng RY, Hong T, Li CY, Shi CL, Liu C, Jiang FY, Li J, Fan XM, Feng SB, Wang YF (2019) Long non-coding RNA zinc finger antisense 1 expression associates with increased disease risk, elevated disease severity and higher inflammatory cytokines levels in patients with lumbar disc degeneration. Medicine (Baltimore) 98(52):e18465. https://doi.org/10.1097/md.0000000000018465

    Article  CAS  Google Scholar 

  34. Perry MM, Muntoni F (2016) Noncoding RNAs and Duchenne muscular dystrophy. Epigenomics 8(11):1527–1537. https://doi.org/10.2217/epi-2016-0088

    Article  CAS  PubMed  Google Scholar 

  35. Hrach HC, Mangone M (2019) miRNA profiling for early detection and treatment of duchenne muscular dystrophy. Int J Mol Sci 20(18):4638. https://doi.org/10.3390/ijms20184638

    Article  CAS  PubMed Central  Google Scholar 

  36. Anaya-Segura MA, Rangel-Villalobos H, Martínez-Cortés G, Gómez-Díaz B, Coral-Vázquez RM, Zamora-González EO, García S, López-Hernández LB (2016) Serum levels of microRNA-206 and novel mini-STR assays for carrier detection in duchenne muscular dystrophy. Int J Mol Sci. https://doi.org/10.3390/ijms17081334

    Article  PubMed  PubMed Central  Google Scholar 

  37. Goyenvalle A, Babbs A, Wright J, Wilkins V, Powell D, Garcia L, Davies KE (2012) Rescue of severely affected dystrophin/utrophin-deficient mice through scAAV-U7snRNA-mediated exon skipping. Hum Mol Genet 21(11):2559–2571. https://doi.org/10.1093/hmg/dds082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jeanson-Leh L, Lameth J, Krimi S, Buisset J, Amor F, Le Guiner C, Barthélémy I, Servais L, Blot S, Voit T, Israeli D (2014) Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in Golden Retriever muscular dystrophy dogs and Duchenne muscular dystrophy patients. Am J Pathol 184(11):2885–2898. https://doi.org/10.1016/j.ajpath.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  39. Mizuno H, Nakamura A, Aoki Y, Ito N, Kishi S, Yamamoto K, Sekiguchi M, Takeda S, Hashido K (2011) Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS ONE 6(3):e18388. https://doi.org/10.1371/journal.pone.0018388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen R, Xin G, Zhang X (2019) Long non-coding RNA HCP5 serves as a ceRNA sponging miR-17-5p and miR-27a/b to regulate the pathogenesis of childhood obesity via the MAPK signaling pathway. J Pediatr Endocrinol Metab 32(12):1327–1339. https://doi.org/10.1515/jpem-2018-0432

    Article  CAS  PubMed  Google Scholar 

  41. Dhawan A, Scott JG, Harris AL, Buffa FM (2018) Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downregulation of tumour suppressors. Nat Commun 9(1):5228. https://doi.org/10.1038/s41467-018-07657-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Angerstein C, Hecker M, Paap BK, Koczan D, Thamilarasan M, Thiesen HJ, Zettl UK (2012) Integration of MicroRNA databases to study MicroRNAs associated with multiple sclerosis. Mol Neurobiol 45(3):520–535. https://doi.org/10.1007/s12035-012-8270-0

    Article  CAS  PubMed  Google Scholar 

  43. Kim JE, Hong JW, Lee HS, Kim W, Lim J, Cho YS, Kwon HJ (2018) Hsa-miR-10a-5p downregulation in mutant UQCRB-expressing cells promotes the cholesterol biosynthesis pathway. Sci Rep 8(1):12407. https://doi.org/10.1038/s41598-018-30530-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tomasetti C, Vogelstein B (2015) Cancer etiology Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81. https://doi.org/10.1126/science.1260825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parlakian A, Gomaa I, Solly S, Arandel L, Mahale A, Born G, Marazzi G, Sassoon D (2010) Skeletal muscle phenotypically converts and selectively inhibits metastatic cells in mice. PLoS ONE 5(2):e9299. https://doi.org/10.1371/journal.pone.0009299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Büget M, Eren İ, Küçükay S (2014) Regional anaesthesia in a Duchenne muscular dystrophy patient for upper extremity amputation. Agri 26(4):191–195. https://doi.org/10.5505/agri.2014.34713

    Article  PubMed  Google Scholar 

  47. Jakab Z, Szegedi I, Balogh E, Kiss C, Oláh E (2002) Duchenne muscular dystrophy-rhabdomyosarcoma, ichthyosis vulgaris/acute monoblastic leukemia: association of rare genetic disorders and childhood malignant diseases. Med Pediatr Oncol 39(1):66–68. https://doi.org/10.1002/mpo.10043

    Article  PubMed  Google Scholar 

  48. Saldanha RM, Gasparini JR, Silva LS, de Carli RR, de Castilhos VU, das Neves MM, Araújo FP, Sales PC, das Neves JF (2005) Anesthesia for Duchenne muscular dystrophy patients: case reports. Rev Bras Anestesiol 55(4):445–449. https://doi.org/10.1590/s0034-70942005000400009

    Article  PubMed  Google Scholar 

  49. Chamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA (2007) Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J 21(9):2195–2204. https://doi.org/10.1096/fj.06-7353com

    Article  CAS  PubMed  Google Scholar 

  50. Vita GL, Polito F, Oteri R, Arrigo R, Ciranni AM, Musumeci O, Messina S, Rodolico C, Di Giorgio RM, Vita G, Aguennouz M (2018) Hippo signaling pathway is altered in Duchenne muscular dystrophy. PLoS ONE 13(10):e0205514. https://doi.org/10.1371/journal.pone.0205514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was kindly supported by National Natural Science Foundation of China (81601129) and Science Foundation of Shenyang (F16-205-1-48).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoxue Xu or Zhiyi He.

Ethics declarations

Conflict of Interest

We have no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Hao, Y., Xiong, S. et al. Comprehensive Analysis of Long Non-coding RNA-Associated Competing Endogenous RNA Network in Duchenne Muscular Dystrophy. Interdiscip Sci Comput Life Sci 12, 447–460 (2020). https://doi.org/10.1007/s12539-020-00388-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-020-00388-2

Keywords

Navigation