Skip to main content
Log in

In Silico Investigations of Chemical Constituents of Clerodendrum colebrookianum in the Anti-Hypertensive Drug Targets: ROCK, ACE, and PDE5

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Understanding the molecular mode of action of natural product is a key step for developing drugs from them. In this regard, this study is aimed to understand the molecular-level interactions of chemical constituents of Clerodendrum colebrookianum Walp., with anti-hypertensive drug targets using computational approaches. The plant has ethno-medicinal importance for the treatment of hypertension and reported to show activity against anti-hypertensive drug targets—Rho-associated coiled-coil protein kinase (ROCK), angiotensin-converting enzyme, and phosphodiesterase 5 (PDE5). Docking studies showed that three chemical constituents (acteoside, martinoside, and osmanthuside β6) out of 21 reported from the plant to interact with the anti-hypertensive drug targets with good glide score. In addition, they formed H-bond interactions with the key residues Met156/Met157 of ROCK I/ROCK II and Gln817 of PDE5. Further, molecular dynamics (MD) simulation of protein–ligand complexes suggest that H-bond interactions between acteoside/osmanthuside β6 and Met156/Met157 (ROCK I/ROCK II), acteoside and Gln817 (PDE5) were stable. The present investigation suggests that the anti-hypertensive activity of the plant is due to the interaction of acteoside and osmanthuside β6 with ROCK and PDE5 drug targets. The identified molecular mode of binding of the plant constituents could help to design new drugs to treat hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin-converting enzyme

MD:

Molecular dynamics

PDE5:

Phosphodiesterase 5

PE:

Potential energy

RMSD:

Root mean square deviations

RMSF:

Root mean square fluctuations

ROCK:

Rho-associated coiled-coil protein kinase

References

  1. Olayiwola A, Vernon H, Hugh S (1991) Conservation of medicinal plants. Cambridge University Press, Cambridge

    Google Scholar 

  2. Ekor M (2014) The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 4:177

    Article  Google Scholar 

  3. Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H (2015) Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv 33(8):1582–1614

    Article  CAS  Google Scholar 

  4. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477

    Article  CAS  Google Scholar 

  5. Shrivastava N, Patel T (2007) Clerodendrum and healthcare: an overview—Part II phytochemistry and biotechnology. Med Aromat Plant Sci Biotechnol 1:209–223

    Google Scholar 

  6. Shrivastava N, Patel T (2007) Clerodendrum and healthcare: an overview Med Aromat Plant Sci. Biotechnol 1:142

    Google Scholar 

  7. Nath CN, Bordoloi DN (1990) Clerodendrum colebrookianum, a folk remedy for the treatment of hypertension in Northeastern India. Int J Pharmacogn 29(2):127–129

    Article  Google Scholar 

  8. Beevers G, Lip GY, O’Brien E (2001) ABC of hypertension: the pathophysiology of hypertension. BMJ 322(7291):912–916

    Article  CAS  Google Scholar 

  9. Anchala R, Kannuri NK, Pant H, Khan H, Franco OH, Di Angelantonio E, Prabhakaran D (2014) Hypertension in India: a systematic review and meta-analysis of prevalence, awareness, and control of hypertension. J Hypertens 32(6):1170–1177

    Article  CAS  Google Scholar 

  10. Brown NJ, Vaughan DE (1998) Angiotensin-converting enzyme inhibitors. Circulation 97(14):1411–1420

    Article  CAS  Google Scholar 

  11. Kuyper LM, Khan NA (2014) Atenolol vs nonatenolol beta-blockers for the treatment of hypertension: a meta-analysis. Can J Cardiol 30(5 Suppl):S47–S53

    Article  Google Scholar 

  12. Sica DA (2004) Minoxidil: an underused vasodilator for resistant or severe hypertension. J Clin Hypertens (Greenwich) 6(5):283–287

    Article  Google Scholar 

  13. Erickson AL, DeGrado JR, Fanikos JR (2010) Clevidipine: a short-acting intravenous dihydropyridine calcium channel blocker for the management of hypertension. Pharmacotherapy 30(5):515–528

    Article  CAS  Google Scholar 

  14. Sanoski CA (2009) Aliskiren: an oral direct renin inhibitor for the treatment of hypertension. Pharmacotherapy 29(2):193–212

    Article  CAS  Google Scholar 

  15. Kjeldsen SE, Stalhammar J, Hasvold P, Bodegard J, Olsson U, Russell D (2010) Effects of losartan vs candesartan in reducing cardiovascular events in the primary treatment of hypertension. J Hum Hypertens 24(4):263–273

    Article  CAS  Google Scholar 

  16. Yang H, Jiang B, Hou AJ, Lin ZW, Sun HD (2000) Colebroside A, a new diglucoside of fatty acid ester of glycerin from Clerodendrum colebrookianum. J Asian Nat Prod Res 2(3):177–185

    Article  CAS  Google Scholar 

  17. Janmoni K, Sureshkumar SS, Mohamed LK (2012) Clerodendrum colebrookianum Walp.: a potential folk medicinal plant of North East India. Asian J Pharm Biol Res 2(4):256–261

    Google Scholar 

  18. Rajlakshmi D, Banerjee SK, Sood S, Maulik SK (2003) In-vitro and in vivo antioxidant activity of different extracts of the leaves of Clerodendron colebrookianum Walp in the rat. J Pharm Pharmacol 55(12):1681–1686

    Article  CAS  Google Scholar 

  19. Lokesh D, Amitsankar D (2012) Evaluation of mechanism for antihypertensive action of Clerodendrum colebrookianum Walp., used by folklore healers in north-east India. J Ethnopharmacol 143(1):207–212

    Article  Google Scholar 

  20. Kang DG, Lee YS, Kim HJ, Lee YM, Lee HS (2003) Angiotensin converting enzyme inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. J Ethnopharmacol 89(1):151–154

    Article  CAS  Google Scholar 

  21. Thai KM, Le DP, Tran NV, Nguyen TT, Tran TD, Le MT (2015) Computational assay of Zanamivir binding affinity with original and mutant influenza neuraminidase 9 using molecular docking. J Theor Biol 385:31–39

    Article  CAS  Google Scholar 

  22. Chinta G, Ramya Chandar Charles M, Klopcic I, Sollner Dolenc M, Periyasamy L, Selvaraj Coumar M (2015) In silico and in vitro investigation of the Piperine’s male contraceptive effect: docking and molecular dynamics simulation studies in androgen-binding protein and androgen receptor. Plant Med 81(10):804–812

    Article  CAS  Google Scholar 

  23. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  CAS  Google Scholar 

  24. Fancui M (2013) Molecular dynamics simulation of VEGFR2 with sorafenib and other urea-substituted aryloxy compounds. J Theor Chem 2013:7

    Google Scholar 

  25. Schrödinger LLC (2011) Maestro, version 9.2. Schrödinger LLC

  26. Kaminski GA, Friesner RA, Tirado-rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem 105:6474–6487

    Article  CAS  Google Scholar 

  27. Jacobs M, Hayakawa K, Swenson L, Bellon S, Fleming M, Taslimi P, Doran J (2006) The structure of dimeric ROCK I reveals the mechanism for ligand selectivity. J Biol Chem 281(1):260–268

    Article  CAS  Google Scholar 

  28. Akama T, Dong C, Virtucio C, Sullivan D, Zhou Y, Zhang YK, Rock F, Freund Y, Liu L, Bu W, Wu A, Fan XQ, Jarnagin K (2013) Linking phenotype to kinase: identification of a novel benzoxaborole hinge-binding motif for kinase inhibition and development of high-potency rho kinase inhibitors. J Pharmacol Exp Ther 347(3):615–625

    Article  CAS  Google Scholar 

  29. Natesh R, Schwager SL, Sturrock ED, Acharya KR (2003) Crystal structure of the human angiotensin-converting enzyme-lisinopril complex. Nature 421(6922):551–554

    Article  CAS  Google Scholar 

  30. Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM (2003) Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 425(6953):98–102

    Article  CAS  Google Scholar 

  31. Schrödinger LLC (2011) Prime, version 9.2. Schrödinger LLC

  32. Schrödinger LLC (2011) Glide, version 9.2. Schrödinger LLC

  33. Raj U, Varadwaj PK (2015) Flavonoids as multi-target inhibitors for proteins associated with Ebola virus: in silico discovery using virtual screening and molecular docking studies. Interdiscip Sci 8(2):132–141

    Article  Google Scholar 

  34. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718

    Article  Google Scholar 

  35. Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE (2011) An automated force field topology builder (ATB) and repository: version 1.0. J Chem Theory Comput 7(12):4026–4037

    Article  CAS  Google Scholar 

  36. Walter RPS, Philippe HH, Ilario GT, Alan EM, Salomon RB, Jens F, Andrew ET, Thomas H, Peter K, Wilfred FVG (1999) The GROMOS biomolecular simulation program package. J Phys Chem 103(19):3596–3607

    Article  Google Scholar 

  37. Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856

    Article  CAS  Google Scholar 

  38. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  Google Scholar 

  39. Abraham MJ, Gready JE (2011) Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J Comput Chem 32(9):2031–2040

    Article  CAS  Google Scholar 

  40. Mueller BK, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 4(5):387–398

    Article  CAS  Google Scholar 

  41. Morgan-Fisher M, Wewer UM, Yoneda A (2013) Regulation of ROCK activity in cancer. J Histochem Cytochem 61(3):185–198

    Article  CAS  Google Scholar 

  42. Rath N, Olson MF (2012) Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 13(10):900–908

    Article  CAS  Google Scholar 

  43. Wirth A (2010) Rho kinase and hypertension. Biochim Biophys Acta 1802(12):1276–1284

    Article  CAS  Google Scholar 

  44. Liao JK, Seto M, Noma K (2007) Rho kinase (ROCK) inhibitors. J Cardiovasc Pharmacol 50(1):17–24

    Article  CAS  Google Scholar 

  45. Hartmann S, Ridley AJ, Lutz S (2015) The function of Rho-associated kinases ROCK1 and ROCK2 in the pathogenesis of cardiovascular disease. Front Pharmacol 6:276

    Article  Google Scholar 

  46. Tripathi SK, Muttineni R, Singh SK (2013) Extra precision docking, free energy calculation and molecular dynamics simulation studies of CDK2 inhibitors. J Theor Biol 334:87–100

    Article  CAS  Google Scholar 

  47. Mishra RK, Alokam R, Singhal SM, Srivathsav G, Sriram D, Kaushik-Basu N, Manvar D, Yogeeswari P (2014) Design of novel rho kinase inhibitors using energy based pharmacophore modeling, shape-based screening, in silico virtual screening, and biological evaluation. J Chem Inf Model 54(10):2876–2886

    Article  CAS  Google Scholar 

  48. Shen M, Zhou S, Li Y, Pan P, Zhang L, Hou T (2013) Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations. Mol BioSyst 9(3):361–374

    Article  CAS  Google Scholar 

  49. Qin J, Lei B, Xi L, Liu H, Yao X (2010) Molecular modeling studies of Rho kinase inhibitors using molecular docking and 3D-QSAR analysis. Eur J Med Chem 45(7):2768–2776

    Article  CAS  Google Scholar 

  50. Chen H, Li S, Hu Y, Chen G, Jiang Q, Tong R, Zang Z, Cai L (2016) An integrated in silico method to discover novel Rock1 inhibitors: multi- complex-based pharmacophore, molecular dynamics simulation and hybrid protocol virtual screening. Comb Chem High Throughput Screen 19(1):36–50

    Article  CAS  Google Scholar 

  51. Clarke NE, Turner AJ (2012) Angiotensin-converting enzyme 2: the first decade. Int J Hypertens 2012:307315

    Article  Google Scholar 

  52. Kass DA, Champion HC, Beavo JA (2007) Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ Res 101(11):1084–1095

    Article  CAS  Google Scholar 

  53. Wilkins MR, Wharton J, Grimminger F, Ghofrani HA (2008) Phosphodiesterase inhibitors for the treatment of pulmonary hypertension. Eur Respir J 32(1):198–209

    Article  CAS  Google Scholar 

  54. Corbin JD (2004) Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int J Impot Res 16(Suppl 1):S4–S7

    Article  CAS  Google Scholar 

  55. Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY (2004) Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12(12):2233–2247

    Article  CAS  Google Scholar 

  56. Rathore PK, Arathy V, Attimarad VS, Kumar P, Roy S (2016) In-silico analysis of gymnemagenin from Gymnema sylvestre (Retz.) R.Br. with targets related to diabetes. J Theor Biol 391:95–101

    Article  CAS  Google Scholar 

Download references

Acknowledgements

HA thanks University Grants Commission (UGC), Government of India, for Rajiv Gandhi National Fellowship (F1-17.1/2012-13/RGNF-2012-13-SC-RAJ-29230) to pursue his PhD degree, and MSC thanks the Department of Biotechnology (DBT), Government of India for providing financial assistance (DBT’s Twining programme for North East-BT/246/NE/TBP/2011/77).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohane Selvaraj Coumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest in the present work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11614 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, H., Syed, S.B., Singh, S.S. et al. In Silico Investigations of Chemical Constituents of Clerodendrum colebrookianum in the Anti-Hypertensive Drug Targets: ROCK, ACE, and PDE5. Interdiscip Sci Comput Life Sci 10, 792–804 (2018). https://doi.org/10.1007/s12539-017-0243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-017-0243-6

Keywords

Navigation