Skip to main content
Log in

Comparative Pharmacophore Modeling and QSAR Studies for Structural Requirements of some Substituted 2-Aminopyridine Derivatives as Inhibitors of Nitric Oxide Synthases

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The present study is an attempt in this direction seeking for the development and comparison of QSAR models of substituted 2-aminopyridine derivatives as inhibitors of nitric oxide synthases by different feature selection methods. The QSAR study was carried out on V-life Molecular Design Suite software, and the derived best QSAR model was derived by partial component regression method. The statistically significant best model with high correlation coefficient (\(r^{2}=0.8408\)) was selected for further study. The model was further validated by means of crossed squared correlation coefficient (\(q^{2}=0.7270\) and \(\hbox {pred}\_r^{2}=0.7889\)) which shows model has good predictive ability. The best 3D-QSAR model showed \(q^{2}=0.8377,\,r^{2} = 0.8739\) and standard error = 0.1954. The predictive ability of the resultant model was evaluated using a test set molecules and the predicted \(r^{2}=0.8159.\) The results reveal that the acceptor, donor, aliphatic, and aromatic pharmacophore properties are favorable contour sites for both the activities. The two-dimensional and k-nearest-neighbor contour plots were required for further understanding of the relationship between structural features of substituted 2-aminopyridine derivatives and their activities which should be applicable to design newer potential inducible nitric oxide synthases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kerwin JF, Lancaster JR, Feldman PF (1995) Nitric oxide: a new paradigm for second messengers. J Med Chem 38:4343–4362

    Article  CAS  PubMed  Google Scholar 

  2. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  3. Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57:707–736

    Article  CAS  PubMed  Google Scholar 

  4. Masters BSS, McMillan K, Sheta EA, Nishimura JS, Roman LJ, Martasek P (1996) Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates l-arginine to produce NO as a cellular signal. FASEB J 10:552–558

    CAS  PubMed  Google Scholar 

  5. Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78:927–930

    Article  CAS  PubMed  Google Scholar 

  6. Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Huang H, Younghee L, Zhang HQ, Fast W, Riley B, Silverman RB (2001) In: Campbell MM, Blagborough IS (eds) Medicinal chemistry into the millennium. Royal Society of Chemistry, Cambridge, p 325

  8. Pfeiffer S, Mayer B, Hemmens B (1999) Nitric oxide: chemical puzzles posed by a biological messenger. Angew Chem Int Ed Engl 38:1714–1731

    Article  Google Scholar 

  9. Stuehr DJ (1999) Mammalian nitric oxide synthases. Biochim Biophys Acta 1411:217–230

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Poulos TL (2005) Structure-function studies on nitric oxide synthases. J Inorg Biochem 99:293–305

    Article  CAS  PubMed  Google Scholar 

  11. Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236

    Article  CAS  PubMed  Google Scholar 

  12. Leone AM, Palmer RM, Knowles RG, Francis PL, Ashton DS, Moncada S (1991) Constitutive and inducible nitric oxide synthases incorporate molecular oxygen into both nitric oxide and citrulline. J Biol Chem 266:23790–23795

    CAS  PubMed  Google Scholar 

  13. Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–918

    Article  CAS  PubMed  Google Scholar 

  14. Stuehr DJ, Kwon NS, Nathan CF, Griffith OW, Feldman PL, Wiseman J (1991) N omega-hydroxy-l-arginine is an intermediate in the biosynthesis of nitric oxide from l-arginine. J Biol Chem 266:6259–6263

    CAS  PubMed  Google Scholar 

  15. Forstermann U, Pollock JS, Schmidt HH, Heller M, Murad F (1991) Calmodulin-dependent endothelium-derived relaxing factor/nitric oxide synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci USA 88:1788–1792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. MacMicking J, Xie QW, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350

    Article  CAS  PubMed  Google Scholar 

  17. Suckling CJ, Gibson CL, Huggan JK, Morthala RR, Clarke B, Kununthur S, Wadsworth RM, Daffc S, Papale D (2008) 6-Acetyl-7,7-dimethyl-5,6,7,8-tetrahydropterin is an activator of nitric oxide synthases. Bioorg Med Chem Lett 18:1563–1566

    Article  CAS  PubMed  Google Scholar 

  18. Sorlie M, Gorren ACF, Marchal S, Shimizu T, Lange R, Andersson KK, Mayer BJ (2003) Single-turnover of nitric-oxide synthase in the presence of 4-amino-tetrahydrobiopterin: proposed role for tetrahydrobiopterin as a proton donor. J Biol Chem 278:48602–48610

    Article  CAS  PubMed  Google Scholar 

  19. Wei C-C, Crane BR, Stuehr D (2003) Tetrahydrobiopterin radical enzymology. Chem Rev 103:2365–83

    Article  CAS  PubMed  Google Scholar 

  20. Szabo C, Lim LHK, Cuzzocrea S, Getting SJ, Zingarelli B, Flower RJ, Salzman AL, Perretti M (1997) Inhibition of poly (ADP-ribose) synthetase attenuates neutrophil recruitment and exerts antiinflammatory effects. J Exp Med 186:1041–1049

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Dinerman JL, Lowenstein CJ, Snyder SH (1993) Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease. Circ Res 73:217–222

    Article  CAS  PubMed  Google Scholar 

  22. Murad F (1999) Cellular signaling with nitric oxide and cyclic GMP. Braz J Med Biol Res 32:1317–1327

    CAS  PubMed  Google Scholar 

  23. Schmidt HH, Walter U (1994) NO at work. Cell 78:919–925

    Article  CAS  PubMed  Google Scholar 

  24. Liberatore GT, Jackson-Lewis V, Vukosavic S, Mandir AS, Vila M, McAuliffe WG, Dawson VL, Dawson TM, Przedborski S (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409

    Article  CAS  PubMed  Google Scholar 

  25. Bingham CO III (2002) The pathogenesis of rheumatoid arthritis: pivotal cytokines involved in bone degradation and inflammation. J Rheumatol 65:3–9

    CAS  Google Scholar 

  26. Kankuri E, Vaali K, Knowles RG, Lahde M, Korpela R, Vapaatalo H, Moilanen E (2001) Suppression of acute experimental colitis by a highly selective inducible nitric-oxide synthase inhibitor, N-[3-(aminomethyl)benzyl]acetamidine. J Pharmacol Exp Ther 298:1128–1132

    CAS  PubMed  Google Scholar 

  27. Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A (2001) Endothelial dysfunction in hypertension. J Cardiovasc Pharmacol 38(2):S11–14

    Article  CAS  PubMed  Google Scholar 

  28. Rekka EA, Chrysselis NC (2002) Nitric oxide in atherosclerosis. Mini Rev Med Chem 2:433–445

    Article  Google Scholar 

  29. Moncada S, Higgs EA (1995) Molecular mechanism and therapeutic strategies related to nitric oxide. FASEB J 9:1319–1330

    CAS  PubMed  Google Scholar 

  30. Olken NM, Marletta MA (1993) N \(^{G}\)-methyl-l-arginine functions as an alternative substrate and mechanism-based inhibitor of nitric oxide synthase. Biochemistry 32:9677–9685

    Article  CAS  PubMed  Google Scholar 

  31. Benigni R, Bossa C (2008) Predictivity of QSAR. J Chem Inf Model 48:971–980

    Article  CAS  PubMed  Google Scholar 

  32. Tropsha A (2003) History of quantitative structure activity relationships. In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery. Wiley, Hoboken

    Google Scholar 

  33. Chaudhary NA, Kumar A, Juyal V, Tiwari M (2008) QSAR analysis of substituted amino pyridines as inducible nitric oxide synthase inhibitors. Ind Drug 45(5):247–255

    Google Scholar 

  34. Hagmann WK, Caldwell CG, Chen P, Durette PL, Esser CK, Lanza TJ, Kopka IE, Guthikonda R, Shah SK, MacCoss M, Chabin RM, Fletcher D, Grant SK, Green BG, Humes JL, Kelly TM, Luell S, Meurer R, Moore V, Pacholok SG, Pavia T, Williams HR, Wong KK (2000) Substituted 2-aminopyridines as inhibitors of nitric oxide synthases. Bioorg Med Chem Lett 10:1975–1978

    Article  CAS  PubMed  Google Scholar 

  35. Vlife MDS software package (2008) version 3.5, supplied by Vlife science technologies Pvt. Ltd, Pune

  36. Halgren TA (1996) Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J Comput Chem 17:553–586

    Article  CAS  Google Scholar 

  37. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  38. Baumann K (2002) An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features. J Chem Inf Comput Sci 42:26–35

    Article  CAS  PubMed  Google Scholar 

  39. Golbraikh A, Tropsha A (2002) Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des 16:357–369 

    Article  CAS  PubMed  Google Scholar 

  40. Ajmani S, Jadhav K, Kulkarni SA (2006) Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. J Chem Inf Model 46:24–31

    Article  CAS  PubMed  Google Scholar 

  41. Clark M, Cramer RD III, Van ON (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012

    Article  CAS  Google Scholar 

  42. Gasteiger J, Marsili M (1980) Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges. Tetrahedron 36:3219–3228

    Article  CAS  Google Scholar 

  43. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  44. Leach AR, Gillet VJ (2003) An introduction to chemoinformatics. Kluwer, Boston

    Google Scholar 

  45. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    Google Scholar 

  46. Darlington RB (1990) Regression and linear models. McGraw-Hill, New York

    Google Scholar 

  47. Zheng W, Tropsha A (2000) Novel variable selection quantitative structure-property relationship approach based on the k-nearest neighbor principle. J Chem Inf Comput Sci 40:185–194 

    Article  CAS  PubMed  Google Scholar 

  48. Kirkpatrick S, Gelatt CDJ, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  PubMed  Google Scholar 

  49. Bagchi MC, Ghosh P (2009) QSAR modeling for quinoxaline derivatives using genetic algorithm and simulated annealing based feature selection. Curr Med Chem 16:4032–4048

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Vlife Science Technologies Pvt. Ltd., for providing the software for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh C. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M.C. Comparative Pharmacophore Modeling and QSAR Studies for Structural Requirements of some Substituted 2-Aminopyridine Derivatives as Inhibitors of Nitric Oxide Synthases. Interdiscip Sci Comput Life Sci 7, 100–112 (2015). https://doi.org/10.1007/s12539-015-0004-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-015-0004-3

Keywords

Navigation