Skip to main content
Log in

Automatic classification of protein structures using physicochemical parameters

  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Protein classification is the first step to functional annotation; SCOP and Pfam databases are currently the most relevant protein classification schemes. However, the disproportion in the number of three dimensional (3D) protein structures generated versus their classification into relevant superfamilies/families emphasizes the need for automated classification schemes. Predicting function of novel proteins based on sequence information alone has proven to be a major challenge.

The present study focuses on the use of physicochemical parameters in conjunction with machine learning algorithms (Naive Bayes, Decision Trees, Random Forest and Support Vector Machines) to classify proteins into their respective SCOP superfamily/Pfam family, using sequence derived information. Spectrophores™, a 1D descriptor of the 3D molecular field surrounding a structure was used as a benchmark to compare the performance of the physicochemical parameters. The machine learning algorithms were modified to select features based on information gain for each SCOP superfamily/Pfam family. The effect of combining physicochemical parameters and spectrophores on classification accuracy (CA) was studied.

Machine learning algorithms trained with the physicochemical parameters consistently classified SCOP superfamilies and Pfam families with a classification accuracy above 90%, while spectrophores performed with a CA of around 85%. Feature selection improved classification accuracy for both physicochemical parameters and spectrophores based machine learning algorithms. Combining both attributes resulted in a marginal loss of performance. Physicochemical parameters were able to classify proteins from both schemes with classification accuracy ranging from 90–96%. These results suggest the usefulness of this method in classifying proteins from amino acid sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. 1990. Basic local alignment search tool. J Mol Biol 215, 403–410.

    Article  PubMed  CAS  Google Scholar 

  2. Ankerst, M., Kastenmüller, G., Kriegel, H.P., Seidl, T., et al., 1999. Nearest neighbor classification in 3d protein databases. In Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology, 34–43.

  3. Arumugam, G., Nair, A.G., Hariharaputran, S., Ramanathan, S. 2013. Rebelling for a reason: Protein structural outliers. PloS one 8, e74416.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Ashby, C., Johnson, D., Walker, K., Kanj, I.A., Xia, G., Huang, X. 2013. New enumeration algorithm for protein structure comparison and classification. BMC Genomics 14, S1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Atsushi, I. 1980. Thermostability and aliphatic index of globular proteins. J Biochem 88, 1895–1898.

    Google Scholar 

  6. Bhasin, M., Raghava, G. 2004. Eslpred: Svm-based method for subcellular localization of eukaryotic proteins using dipeptide composition and psi-blast. Nucleic Acids Res 32, W414–W419.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Blomberg, N., Nilges, M. 1997. Functional diversity of ph domains: an exhaustive modelling study. Fold Des 2, 343–355.

    Article  PubMed  CAS  Google Scholar 

  8. Bultinck, P., Langenaeker, W., Lahorte, P., De Proft, F., Geerlings, P., Waroquier, M., Tollenaere, J. 2002. The electronegativity equalization method I: Parametrization and validation for atomic charge calculations. J Phys Chem A 106, 7887–7894.

    Article  CAS  Google Scholar 

  9. Casbon, J., Saqi, M. 2006. Functional diversity within proteins superfamilies. Journal of Integrative Bioinformatics 3.

    Google Scholar 

  10. Chan, H.S., Dill, K.A. 1994. Transition states and folding dynamics of proteins and heteropolymers. J Chem Phys 100, 9238.

    Article  Google Scholar 

  11. Demšar, J., Zupan, B., Leban, G., Curk, T. 2004. Orange: From experimental machine learning to interactive data mining. Springer, Berlin, Heidelberg, pp 537–539.

    Google Scholar 

  12. Dhir, C., Iqbal, N., Lee, S.Y. 2007. Efficient feature selection based on information gain criterion for face recognition. In Information Acquisition, 2007. ICIA’07. International Conference on. IEEE, 523–527.

    Chapter  Google Scholar 

  13. Dyda, F., Klein, D.C., Hickman, A.B. 2000. Gcn5-related n-acetyltransferases: a structural overview. Annu Rev Bioph Biom 29, 81–103.

    Article  CAS  Google Scholar 

  14. Elofsson, A., Heijne, G.V. 2007. Membrane protein structure: prediction versus reality. Annu Rev Biochem 76, 125–140.

    Article  PubMed  CAS  Google Scholar 

  15. Erdmann, M.A. 2005. Protein similarity from knot theory: geometric convolution and line weavings. J Comput Biol 12, 609–637.

    Article  PubMed  CAS  Google Scholar 

  16. Esposito, F., Malerba, D., Semeraro, G., Kay, J. 1997. A comparative analysis of methods for pruning decision trees. IEEE T Pattern Anal 19, 476–491.

    Article  Google Scholar 

  17. Frank, E., Hall, M., Pfahringer, B. 2002. Locally weighted naive bayes. In Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 249–256.

    Google Scholar 

  18. Gonnet, G.H., Cohen, M.A., Benner, S.A. 1992. Exhaustive matching of the entire protein sequence database. Science 256, 1443–1445.

    Article  PubMed  CAS  Google Scholar 

  19. Hand, D.J., Yu, K. 2001. Idiot’s bayes not so stupid after all? Int Stat Rev 69, 385–398.

    Google Scholar 

  20. Henikoff, S., Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. P Natl Acad Sci USA 89, 10915–10919.

    Article  CAS  Google Scholar 

  21. Hobohm, U., Sander, C. 1995. A sequence property approach to searching protein databases. J Mol Biol 251, 390–399.

    Article  PubMed  CAS  Google Scholar 

  22. Holm, L., Sander, C. 1996. The fssp database: fold classification based on structure-structure alignment of proteins. Nucleic Acids Res 24, 206–209.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Idicula-Thomas, S., Balaji, P.V. 2005. Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in escherichia coli. Protein Sci 14, 582–592.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Jain, P., Hirst, J.D. 2010. Automatic structure classification of small proteins using random forest. BMC bioinformatics 11, 364.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim, Y.J., Patel, J.M. 2006. A framework for protein structure classification and identification of novel protein structures. BMC bioinformatics 7, 456.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Livingston, F. 2005. Implementation of breiman’s random forest machine learning algorithm. ECE591Q Machine Learning Journal Paper.

    Google Scholar 

  27. Lu, Z., Szafron, D., Greiner, R., Lu, P., Wishart, D.S., Poulin, B., Anvik, J., Macdonell, C., Eisner, R. 2004. Predicting subcellular localization of proteins using machine-learned classifiers. Bioinformatics 20, 547–556.

    Article  PubMed  CAS  Google Scholar 

  28. Ma, B., Elkayam, T., Wolfson, H., Nussinov, R. 2003. Protein-protein interactions: Structurally conserved residues distinguish between binding sites and exposed protein surfaces. P Natl Acad Sci USA 100, 5772–5777.

    Article  CAS  Google Scholar 

  29. Mohan, A., Anishetty, S., Gautam, P. 2010. Global metal-ion binding protein fingerprint: A method to identify motif-less metal-ion binding proteins. J Bioinform Comput Biol 8, 717–726.

    Article  CAS  Google Scholar 

  30. Momany, F. 1978. Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid. J Phys Chem 82, 592–601.

    Article  CAS  Google Scholar 

  31. Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C. 1995. Scop: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247, 536–540.

    PubMed  CAS  Google Scholar 

  32. Ooms, F., Wouters, J., Collin, S., Durant, F., Jegham, S., George, P. 1998. Molecular lipophilicity potential by clip, a reliable tool for the description of the 3d distribution of lipophilicity: application to 3-phenyloxazolidin-2-one, a prototype series of reversible maoa inhibitors. Bioorg Med Chem Lett 8, 1425–1430.

    Article  PubMed  CAS  Google Scholar 

  33. Pearson, W.R. 1991. Searching protein sequence libraries: comparison of the sensitivity and selectivity of the smith-waterman and fasta algorithms. Genomics 11, 635–650.

    Article  PubMed  CAS  Google Scholar 

  34. Rasoul, S., David, L. 1991. A survey of decision tree classifier methodology. IEEE Trans Syst Man Cybern 21, 660–674.

    Article  Google Scholar 

  35. Rice, P., Longden, I., Bleasby, A. 2000. Emboss: the european molecular biology open software suite. Trends Genet 16, 276–277.

    Article  PubMed  CAS  Google Scholar 

  36. Røgen, P., Fain, B. 2003. Automatic classification of protein structure by using gauss integrals. P Natl Acad Sci USA 100, 119–124.

    Article  Google Scholar 

  37. Santini, G., Soldano, H., Pothier, J. 2012. Automatic classification of protein structures relying on similarities between alignments. BMC bioinformatics 13, 233.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Shen, J., Zhang, J., Luo, X., Zhu, W., Yu, K., Chen, K., Li, Y., Jiang, H. 2007. Predicting protein-protein interactions based only on sequences information. P Natl Acad Sci USA 104, 4337–4341.

    Article  CAS  Google Scholar 

  39. Shirota, M., Ishida, T., Kinoshita, K. 2008. Effects of surface-to-volume ratio of proteins on hydrophilic residues: Decrease in occurrence and increase in buried fraction. Protein Sci 17, 1596–1602.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Söding, J., Biegert, A., Lupas, A.N. 2005. The hhpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33, W244–W248.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sun, X.D., Huang, R.B. 2006. Prediction of protein structural classes using support vector machines. Amino Acids 30, 469–475.

    Article  PubMed  CAS  Google Scholar 

  42. Thijs, G., Langenaeker, W., De Winter, H. 2011. Application of spectrophores to map vendor chemical space using self-organising maps. J Cheminformatics 3, 1–1.

    Article  Google Scholar 

  43. Vasanthanathan, P., Taboureau, O., Oostenbrink, C., Vermeulen, N.P.E., Olsen, L., Jrgensen, F.S. 2009. Classification of cytochrome p450 1a2 inhibitors and noninhibitors by machine learning techniques. Drug Metab Dispos 37, 658–664.

    Article  PubMed  CAS  Google Scholar 

  44. Wang, G., Lochovsky, F.H. 2004. Feature selection with conditional mutual information maximin in text categorization. In Proceedings of the thirteenth ACM international conference on Information and knowledge management. ACM, 342–349.

    Google Scholar 

  45. Wildman, S.A., Crippen, G.M. 1999. Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comp Sci 39, 868–873.

    Article  CAS  Google Scholar 

  46. Wu, C.H., Huang, H., Yeh, L.S.L., Barker, W.C. 2003. Protein family classification and functional annotation. Comput Biol Chem 27, 37–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Pennathur.

Additional information

Equal contribution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, A., Divya Rao, M., Sunderrajan, S. et al. Automatic classification of protein structures using physicochemical parameters. Interdiscip Sci Comput Life Sci 6, 176–186 (2014). https://doi.org/10.1007/s12539-013-0199-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-013-0199-0

Key words

Navigation