Skip to main content
Log in

Effects of environmental and climatic drivers on abyssal macrobenthic infaunal communities from the NE Pacific nodule province

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The macrofauna in soft sediments of the deep seafloor is generally diverse and represents a comparatively well-studied faunal group of deep-sea ecosystems. In the abyss of the Clarion Clipperton Fracture Zone (CCFZ) in the NE Pacific, macrofauna are major contributors to benthic biodiversity. Their distribution, composition, and diversity have been frequently investigated to assess the potential impacts of future mining activities on the resident fauna. In this study, patterns of densities and community structure of CCFZ macrobenthic infauna and their relationships with a range of environmental and climatic variables were examined, with a special focus on communities from the eastern German contract area (referred to as BGR CA). However, comparisons were also made with other contractor areas (e.g., IFREMER, IOM, GSR) and one Area of Particular Environmental Interest (APEI3). Material for this study was obtained by means of a box corer during six expeditions to the CCFZ between 2013 and 2018 resulting in 148 samples. Our study uncovered notable spatial and temporal variations in both faunal densities and community composition. While areas within the BGR CA exhibited a similar community composition, slight differences were observed between the various CAs and APEI3. Surprisingly, we found an unexpected negative correlation between food availability and both macrofaunal density and community structure that may be attributed to differences in sampling methodologies and pronounced temporal variation. Furthermore, we explored the impact of climatic fluctuations associated with the El Niño/Southern Oscillation (ENSO) on macrofaunal densities, observing an increase during warm (El Niño) events. Our findings underscore the challenges of accurately assessing spatial and temporal variations in the absence of standardised sampling protocols. Hence, we emphasize the importance of adopting standardised protocols to enhance data comparability, thereby fostering a deeper understanding of the underlying factors influencing spatial and temporal changes in macrofauna community structure within the CCFZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10

Similar content being viewed by others

References

  • Aleynik D, Inall ME, Dale A, Vink A (2017) Impact of remotely generated eddies on plume dispersion at abyssal mining sites in the Pacific. Sci Rep 7(1):1–14

    Article  CAS  Google Scholar 

  • Amon DJ, Ziegler AF, Dahlgren TG, Glover AG, Goineau A et al (2016) Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci Rep 6(1):1–12

    Article  Google Scholar 

  • Amon DJ, Gollner S, Morato T, Smith CR, Chen C et al (2022) Assessment of scientific gaps related to the effective environmental management of deep-seabed mining. Mar Pol 138:105006

    Article  Google Scholar 

  • Arrigo KR (2005) Marine microorganisms and global nutrient cycles. Nature 437:349–355. https://doi.org/10.1038/nature04159

    Article  CAS  PubMed  Google Scholar 

  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA et al (2018) Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284. https://doi.org/10.1111/geb.12693

    Article  Google Scholar 

  • Błażewicz M, Jóźwiak P, Menot L, Pabis K (2019) High species richness and unique composition of the tanaidacean communities associated with five areas in the Pacific polymetallic nodule fields. Progr Oceanogr 176:102141

    Article  Google Scholar 

  • Bonifácio P, Grémare A, Amouroux J-M, Labrune C (2019) Climate-driven changes in macrobenthic communities in the Mediterranean Sea: a 10-year study in the Bay of Banyuls-sur-Mer. Ecol Evol 9:10483–10498. https://doi.org/10.1002/ece3.5569

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonifácio P, Martínez Arbizu P, Menot L (2020) Alpha and beta diversity patterns of polychaete assemblages across the nodule province of the eastern Clarion-Clipperton Fracture Zone (equatorial Pacific). Biogeosciences 17(4):865–886

    Article  Google Scholar 

  • Bonifácio P, Neal L, Menot L (2021) Diversity of deep-sea scale-worms (Annelida, Polynoidae) in the Clarion-Clipperton Fracture Zone. Front Mar Sci 8:656899. https://doi.org/10.3389/fmars.2021.656899

    Article  Google Scholar 

  • Bosch S (2020) sdmpredictors: species distribution modelling predictor datasets. R package version 0.2.9. https://CRAN.R-project.org/package=sdmpredictors

  • Bridge TCL, Done TJ, Beaman RJ et al (2011) Topography, substratum and benthic macrofaunal relationships on a tropical mesophotic shelf margin, central Great Barrier Reef, Australia. Coral Reefs 30:143–153. https://doi.org/10.1007/s00338-010-0677-3

    Article  Google Scholar 

  • Brix S, Osborn KJ, Kaiser S et al (2020) Adult life strategy affects distribution patterns in abyssal isopods – implications for conservation in Pacific nodule areas. Biogeosciences 17:6163–6184. https://doi.org/10.5194/bg-17-6163-2020

    Article  Google Scholar 

  • Bruyne KD, Stoffers H, Flamen S, Beuf HD, Taymans C et al. (2022) A precautionary approach to developing nodule collector technology. In Perspectives on deep-sea mining (pp. 137–165). Springer, Cham

  • Cael BB, Bisson K, Conte M, Duret MT, Follett CL et al (2021) Open ocean particle flux variability from surface to seafloor. Geophys Res Lett 48(9):e2021GL092895

    Article  Google Scholar 

  • Christiansen B, Denda A, Christiansen S (2020) Potential effects of deep seabed mining on pelagic and benthopelagic biota. Mar Pol 114:103442

    Article  Google Scholar 

  • Chuar CH, Tong SJW, Chim CK, San Wong HP, Tan KS (2020) Abyssal macrofaunal community structure in the polymetallic nodule exploration area at the easternmost region of the Clarion-Clipperton Fracture Zone, Pacific Ocean. Deep-Sea Res I Oceanogr Res Pap 161:103284

    Article  Google Scholar 

  • Conover WJ, Iman RL (1979) On multiple-comparisons procedures, Los Alamos Scientific Laboratory, New Mexico LA-7677- MS

  • Cosson N, Sibuet M, Galeron J (1997) Community structure and spatial heterogeneity of the deep-sea macrofauna at three contrasting stations in the tropical northeast Atlantic. Deep-Sea Res I Oceanogr Res Pap 44(2):247–269

    Article  CAS  Google Scholar 

  • De La Rocha CL, Passow U (2007) Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Res II: Top Stud Oceanogr 54:639–658

    Google Scholar 

  • De Smet B, Pape E, Riehl T, Bonifácio P, Colson L, Vanreusel A (2017) The community structure of deep-sea macrofauna associated with polymetallic nodules in the eastern part of the Clarion-Clipperton Fracture Zone. Front Mar Sci 4:103

    Google Scholar 

  • Drazen JC, Smith CR, Gjerde KM, Haddock SH, Carter GS et al (2020) Midwater ecosystems must be considered when evaluating environmental risks of deep-sea mining. Proc Nat Acad Sci doi/. https://doi.org/10.1073/pnas.2011914117

    Article  Google Scholar 

  • Drennan R, Wiklund H, Rabone M, Georgieva MN, Dahlgren TG, Glover AG (2021) Neanthes goodayi sp. nov. (Annelida, Nereididae), a remarkable new annelid species living inside deep-sea polymetallic nodules. Eur J Taxon 760:160–185

    Article  Google Scholar 

  • Ellwood MJ, Bowie AR, Baker A, Gault-Ringold M, Hassler C et al (2018) Insights into the biogeochemical cycling of iron, nitrate, and phosphate across a 5,300 km South Pacific zonal section (153 E–150 W). Global Biogeochem Cycl 32(2):187–207

    Article  CAS  Google Scholar 

  • Fiedler PC (2002) Environmental change in the eastern tropical Pacific Ocean: review of ENSO and decadal variability. Mar Ecol Prog Ser 244:265–283. https://doi.org/10.3354/meps244265

    Article  Google Scholar 

  • Fischer V, Brandt A (2015) Composition of the abyssal infauna of the Kuril-Kamchatka area (NW Pacific) collected with a box corer. Deep-sea Res II: Top Stud Oceanogr 111:26–33

    Google Scholar 

  • Galéron J, Sibuet M, Vanreusel A, Mackenzie K, Gooday AJ et al (2001) Temporal patterns among meiofauna and macrofauna taxa related to changes in sediment geochemistry at an abyssal NE Atlantic site. Progr Oceanogr 50(1–4):303–324

    Article  Google Scholar 

  • Garcia TM, Cascon H, Franklin-Junior W (2008) Macrofauna associated with branching fire coral. Thalassas 24(1):11–19

    Google Scholar 

  • Gazis I, de Stigter H, Mohrmann J, Heger K, Diaz M, et al. (submitted). Monitoring benthic plumes, sediment redeposition and seafloor imprints caused by deep-sea polymetallic nodule mining. Submitted to Nat Commun

  • Gillard B, Purkiani K, Chatzievangelou D, Vink A, Iversen MH et al (2019) Physical and hydrodynamic properties of deep sea mining-generated, abyssal sediment plumes in the Clarion Clipperton Fracture Zone (eastern-central Pacific). Elementa: Sci Anthropocene 7:1–14A. https://doi.org/10.1525/elementa.343

  • Glover AG, Dahlgren TG, Wiklund H, Mohrbeck I, Smith CR (2015) An end-to-end DNA taxonomy methodology for benthic biodiversity survey in the Clarion-Clipperton Zone, central Pacific abyss. J Mar Sci Eng 4:2. https://doi.org/10.3390/jmse4010002

    Article  Google Scholar 

  • Gollner S, Kaiser S, Menzel L, Jones DOB, Brown A, Mestre NC, Arbizu PM (2017) Resilience of benthic deep-sea fauna to mining activities. Mar Environ Res 129:76–101

    Article  CAS  PubMed  Google Scholar 

  • Hauquier F, Macheriotou L, Bezerra TN, Egho G, Martínez Arbizu P, Vanreusel A (2019) Distribution of free-living marine nematodes in the Clarion-Clipperton Zone: implications for future deep-sea mining scenarios. Biogeosciences 16(18):3475–3489

    Article  CAS  Google Scholar 

  • Hecker B, Paul AZ (1979) Abyssal community structure of the benthic infauna of the eastern equatorial Pacific: DOMES sites A, B, and C. In Marine geology and oceanography of the Pacific manganese nodule province (pp 287–308). Springer, Boston, MA

  • Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate cores in the central North Pacific. Deep-Sea Res Oceanogr Abstr 21(3):185–209

    Article  Google Scholar 

  • Hijmans RJ (2016) raster: geographic data analysis and modeling. https://cran.r-project.org/package=raster

  • Hollander M, Wolfe DA (1973) Nonparametric statistical methods. John Wiley & Sons, New York

    Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Horton T and WoRMS editors (2023) World register of marine species. Available from https://www.marinespecies.org at VLIZ. Accessed 2023-05-12. https://doi.org/10.14284/170

  • International Seabed Authority (ISA) (2001) Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for polymetallic nodules in the area. ISBA_7_LTC, International Seabed Authority, Kingston, Jamaica, 2001. https://isa.org.jm/files/files/documents/isba_7ltc_1rev1.pdf

  • International Seabed Authority (ISA) (2011) Environmental management plan for the Clarion Clipperton Zone. ISBA/17/LTC/7, International Seabed Authority, Kingston, Jamaica, 2011

  • International Seabed Authority (ISA) (2020) Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the area, https://isa.org.jm/files/files/documents/25ltc-6-rev1-en.pdf

  • International Seabed Authority (ISA) (2021) Decision of the Council of the International Seabed Authority relating to the review of the environmental management plan for the Clarion-Clipperton Zone. ISBA/26/C/58, International Seabed Authority, Kingston, Jamaica, 2021. https://isa.org.jm/files/files/documents/ISBA_26_C_58_E.pdf

  • ISBA/25/LTC/6/Rev.1 (2020) Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the area. In: International Seabed Authority, Kingston

  • Janssen A, Kaiser S, Meissner K, Brenke N, Menot L, Arbizu PM (2015) A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PloS One 10(2):e0117790

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen A, Stuckas H, Vink A, Arbizu PM (2019) Biogeography and population structure of predominant macrofaunal taxa (Annelida and Isopoda) in abyssal polymetallic nodule fields: implications for conservation and management. Mar Biodiv 49(6):2641–2658

    Article  Google Scholar 

  • Jones DOB, Kaiser S, Sweetman AK, Smith CR, Menot L et al (2017) Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS One 12(2):e0171750

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DOB, Ardron JA, Colaço A, Durden JM (2020) Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Mar Pol 118. https://doi.org/10.1016/j.marpol.2018.10.025

  • Kaiser S, Barnes DKA, Brandt A (2007) Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep-Sea Res II Top Stud Oceanogr 54(16–17):1776–1789

    Article  Google Scholar 

  • Kaiser S, Brandt A, Brix S, Brenke N, Kürzel K et al (2023) Community structure of abyssal macrobenthos of the South and equatorial Atlantic Ocean-identifying patterns and environmental controls. Deep-Sea Res I Oceanogr Res Pap 197:104066

    Article  CAS  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 Reanalysis: general specifications and basic characteristics. J Meteor Soc Jpn 93:5–48. https://doi.org/10.2151/jmsj.2015-001

    Article  Google Scholar 

  • Koschinsky A, Heinrich L, Boehnke K, Cohrs JC, Markus T et al (2018) Deep-sea mining: interdisciplinary research on potential environmental, legal, economic, and societal implications. Integr Environ Assess 14(6):672–691

    Article  Google Scholar 

  • Kröncke I, Dippner J, Heyen H, Zeiss B (1998) Long-term changes in macrofaunal communities off Norderney (East Frisia, Germany) in relation to climate variability. Mar Ecol Prog Ser 167:25–36. https://doi.org/10.3354/meps167025

    Article  Google Scholar 

  • Kröncke I, Türkay M (2003) Structural and functional aspects of the benthic communities in the deep Angola Basin. Mar Ecol Progr Ser 260:43–53

    Article  Google Scholar 

  • Kuhn T (2015) RV SONNE SO240 Cruise Report / Fahrtbericht: SO240 – FLUM: Low-temperature fluid circulation at seamounts and hydrothermal pits: heat flow regime, impact on biogeochemical processes, and its potential influence on the occurrence and composition of manganese nodules in the equatorial eastern Pacific. Manzanillo-Manzanillo (Mexico), 03.05.-16.06.2015

  • Kuhn T, Rühlemann C (2021) Exploration of polymetallic nodules and resource assessment: a case study from the German contract area in the Clarion-Clipperton Zone of the tropical Northeast Pacific. Minerals 11(6):618

    Article  CAS  Google Scholar 

  • Lampitt RS (1985) Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension. Deep-Sea Res. A: Oceanogr Res Pap 32(8):885–897

    Article  Google Scholar 

  • Leduc D, Rowden AA, Torres LG, Nodder SD, Pallentin A (2015) Distribution of macro-infaunal communities in phosphorite nodule deposits on Chatham Rise, Southwest Pacific: implications for management of seabed mining. Deep-Sea Res I Oceanogr Res Pap 99:105–118

    Article  CAS  Google Scholar 

  • Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. https://doi.org/10.1007/s004420100716

    Article  PubMed  Google Scholar 

  • Lins L, Zeppilli D, Menot L, Michel LN, Bonifácio P et al (2021) Toward a reliable assessment of potential ecological impacts of deep-sea polymetallic nodule mining on abyssal infauna. Limnol Oceanogr Meth. https://doi.org/10.1002/lom3.10448

    Article  Google Scholar 

  • Levin LA, Etter RJ, Rex MA, Gooday AJ, Smith CR et al (2001) Environmental influences on regional deep-sea species diversity. Annu Rev Ecol Systemat 32:51–93

    Article  Google Scholar 

  • Lutz M, Dunbar R, Caldeira K (2002) Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochem Cycles 16:11–18. https://doi.org/10.1029/2000gb001383

    Article  Google Scholar 

  • Lutz MJ, Caldeira K, Dunbar RB, Behrenfeld MJ (2007) Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J Geophys Res Oceans 112(112):JC003706

    Google Scholar 

  • Martínez Arbizu P, Haeckel M (2015) RV SONNE Fahrtbericht/Cruise Report SO239: EcoResponse assessing the ecology, connectivity and resilience of polymetallic nodule field systems, Balboa (Panama)–Manzanillo (Mexico,) 11.03.-30.04. 2015

  • Min WG, Kim D, Rho HS, Chi SB, Son SK (2018) Distribution and variability of the meiobenthic assemblages near the Korean polymetallic nodule claim area of the Clarion-Clipperton Fracture Zone (subequatorial NE Pacific). Ocean Sci J 53(2):315–336

    Article  CAS  Google Scholar 

  • Muñoz-Royo C, Peacock T, Alford MH, Smith JA, Le Boyer A et al (2021) Extent of impact of deep-sea nodule mining midwater plumes is influenced by sediment loading, turbulence and thresholds. Commun Earth Environ. 2(1):148. https://doi.org/10.1038/s43247-021-00213-8

    Article  Google Scholar 

  • Muñoz-Royo C, Ouillon R, El Mousadik S, Alford MH, Peacock T (2022) An in situ study of abyssal turbidity-current sediment plumes generated by a deep seabed polymetallic nodule mining preprototype collector vehicle. Sci Adv 8(38):1219

    Article  Google Scholar 

  • Oksanen J, Simpson GL, Blanchet FG, et al (2022) Vegan: community ecology package. R package version 2.6-4.

  • Oebius HU, Becker HJ, Rolinski S, Jankowski JA (2001) Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep-Sea Res II: Top Stud Oceanogr 48(17–18):3453–3467

    CAS  Google Scholar 

  • Pape E, Bezerra TN, Gheerardyn H, Buydens M, Kieswetter A et al (2021) Potential impacts of polymetallic nodule removal on deep-sea meiofauna. Sci Rep 11:19996. https://doi.org/10.1038/s41598-021-99441-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasotti F, Mevenkamp L, Pape E, Błażewicz M, Bonifácio P et al (2021) A local scale analysis of manganese nodules influence on the Clarion-Clipperton Fracture Zone macrobenthos. Deep-Sea Res I: Oceanogr Res Pap 168:103449

    Article  Google Scholar 

  • Pennington JT, Mahoney KL, Kuwahara VS, Kolber DD, Calienes R, Chavez FP (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanogr 69:285–317. https://doi.org/10.1016/j.pocean.2006.03.012

    Article  Google Scholar 

  • Peukert A, Schoening T, Alevizos E, Köser K, Kwasnitschka T, Greinert J (2018) Understanding Mn-nodule distribution and evaluation of related deep-sea mining impacts using AUV-based hydroacoustic and optical data. Biogeosciences 15(8):2525–2549

    Article  Google Scholar 

  • Pohlert T (2022) PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. R package version 1.9.10

  • Posit team (2023) RStudio: integrated development environment for R. Posit Software, PBC, Boston, MA

  • Purkiani K, Gillard B, Paul A, Haeckel M, Haalboom S et al (2021) Numerical simulation of deep-sea sediment transport induced by a dredge experiment in the northeastern Pacific Ocean. Front Mar Sci 8:719463

    Article  Google Scholar 

  • Radziejewska T, Mianowicz K, Abramowski T (2022) Natural variability versus anthropogenic impacts on deep-sea ecosystems of importance for deep-sea mining. In Perspectives on deep-sea mining (pp. 281–311). Springer, Cham

  • R Core Team (2023) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Revelle W (2023) psych: procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois

    Google Scholar 

  • Rühlemann C, Baumann L, Blöthe M, Bruns A, Eisenhauer A et al. (2010) Cruise report SO-205 MANGAN, microbiology, paleoceanography and biodiversity in the manganese nodule belt of the equatorial NE Pacific, BGR, August 2010, p 113

  • Rühlemann C, Albers L, Freitag R, Goergens R, Heller C, Janssen A, Kefel O, Kuhn T, Miller J, Ostmann A, Raschka U, Sturm S, Urbanek F, Vink A, Wedemeyer H, Wegorzewski A (2014) MANGAN 2013 cruise report: geology and biodiversity of the German license area for the exploration of polymetallic nodules in the equatorial NE Pacific. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 358

  • Rühlemann C, Albers L, Gathen M, Goergens R, Heller C et al. (2015) MANGAN 2014 cruise report: geology, biodiversity and environment of the German license area for the exploration of polymetallic nodules in the equatorial NE Pacific. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 349

  • Rühlemann C, Albers L, Freitag R, Goergens R, Hagedorn D et al. (2017) MANGAN 2016 cruise report: geology, biodiversity and environment of the German license area for the exploration of polymetallic nodules in the equatorial NE Pacific. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 303

  • Rühlemann C, Bruns A, Edullantes C, Ercan T, Gatzemeier N et al. (2019) MANGAN 2018 cruise report: geology, biodiversity and environment of the German license area for the exploration of polymetallic nodules in the equatorial NE Pacific. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, pp 324

  • Ruhl HA, Smith JKL (2004) Shifts in deep-sea community structure linked to climate and food supply. Science 305:513–515

    Article  CAS  PubMed  Google Scholar 

  • Sánchez N, González-Casarrubios A, Cepeda D, Khodami S, Pardos F et al (2022) Diversity and distribution of Kinorhyncha in abyssal polymetallic nodule areas of the Clarion-Clipperton Fracture Zone and the Peru Basin, East Pacific Ocean, with the description of three new species and notes on their intraspecific variation. Mar Biodivers 52:52. https://doi.org/10.1007/s12526-022-01279-z

    Article  Google Scholar 

  • Santoso A, Mcphaden MJ, Cai W (2017) The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño. Rev Geophys 55(4):1079–1129

    Article  Google Scholar 

  • Sayles FL, Martin WR, Deuser WG (1994) Response of benthic oxygen demand to particulate organic carbon supply in the deep sea near Bermuda. Nature 371:686–689

    Article  CAS  Google Scholar 

  • Schriever C, Ahnert A, Bluhm H, Borowski C, Thiel H (1997) Results of the large scale deep-sea environmental impact study DISCOL during eight years of investigation. In The seventh international offshore and polar engineering conference. OnePetro

  • Simon-Lledó E, Bett BJ, Huvenne VA, Schoening T, Benoist NM et al (2019) Megafaunal variation in the abyssal landscape of the Clarion Clipperton Zone. Prog Oceanogr 170:119–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith CR, AWJ Demopoulos (2003) The deep Pacific Ocean floor: ecosystems of the world, v. 28. Ecosystems of the deep oceans

  • Smith CR, de Leo FC, Bernardino AF, Sweetman AK, Arbizu PM (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528

    Article  PubMed  Google Scholar 

  • Smith KL, Ruhl HA, Huffard CL, Messié M, Kahru M (2018) Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc Nat Acad Sci 115(48):12235–12240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith CR, Tunnicliffe V, Colaço A, Drazen JC, Gollner S et al (2020) Deep-sea misconceptions cause underestimation of seabed-mining impacts. Trends Ecol Evol 35(10):853–857

    Article  PubMed  Google Scholar 

  • Spiess FN, Hessler RR, Wilson GDF, Weydert M (1987) Environmental effects of deep-sea dredging (final report to the national oceanic and atmospheric administration on contract NA83-SAC-00659). La Jolla

  • Thiel H, Schriever G, Bussau C, Borowski C (1993) Manganese nodule crevice fauna. Deep-Sea Res I: Oceanogr Res Pap 40(2):419–423

    Article  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecol Biogeogr 21:272–281. https://doi.org/10.1111/j.1466-8238.2011.00656.x

    Article  Google Scholar 

  • Vanreusel A, Hilario A, Ribeiro PA, Menot L, Arbizu PM (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep 6(1):1–6

    Article  Google Scholar 

  • Veillette J, Sarrazin J, Gooday AJ, Galéron J, Caprais JC et al (2007) Ferromanganese nodule fauna in the tropical North Pacific Ocean: species richness, faunal cover and spatial distribution. Deep-Sea Res I: Oceanogr Res Pap 54(11):1912–1935

    Article  Google Scholar 

  • Volz JB, Mogollón JM, Geibert W, Arbizu PM, Koschinsky A, Kasten S (2018) Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton Zone, Pacific Ocean. Deep Sea Res I: Oceanogr Res Pap 140:159–172

    Article  CAS  Google Scholar 

  • Washburn TW, Turner PJ, Durden JM, Jones DOB, Weaver P, Van Dover CL (2019) Ecological risk assessment for deep-sea mining. Ocean Coast Manag 176:24–39

    Article  Google Scholar 

  • Washburn TW, Jones DOB, Wei CL, Smith CR (2021a) Environmental heterogeneity throughout the clarion-clipperton zone and the potential representativity of the APEI network. Front Mar Sci 8:319

    Article  Google Scholar 

  • Washburn TW, Menot L, Bonifácio P, Pape E, Błażewicz M et al (2021b) Patterns of macrofaunal biodiversity across the Clarion-Clipperton Zone: an area targeted for seabed mining. Front Mar Sci 8:250

    Article  Google Scholar 

  • Weaver PPE, Aguzzi J, Boschen-Rose RE, Colaço A, de Stigter H, Gollner S, Thomsen L (2022) Assessing plume impacts caused by polymetallic nodule mining vehicles. Mar Pol 139:105011

    Article  Google Scholar 

  • Wedding LM, Friedlander AM, Kittinger JN, Watling L, Gaines SD et al (2013) From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc R Soc B Biol Sci 280(1773):20131684

    Article  CAS  Google Scholar 

  • Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis

  • Wickham H, François R, Henry L, et al (2023) dplyr: a grammar of data manipulation.Wilson GDF (1992) Biological evaluation of a preservational reserve area: faunal data and comparative analysis. Australian Museum, Sydney. https://doi.org/10.13140/RG.2.1.2416.8484

  • Wilson GDF (2017) Macrofauna abundance, species diversity and turnover at three sites in the Clipperton-Clarion Fracture Zone. Mar Biodiv 47(2):323–347

    Article  Google Scholar 

  • Yoder M, De Ley IT, King IW, Mundo-Ocampo M, Mann J et al (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8(3):367–376

    Article  CAS  Google Scholar 

  • Yu OH, Lee HG, Kim D, Wi JH, Kim KH, Yoo CM (2018) Characterization of deep-sea macrofauna in the Korean exploration claim area in the Clarion-Clipperton Fracture Zone, northeastern Pacific Ocean. Ocean Sci J 53(2):301–314

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the masters, nautical officers, and all crew members and participants of RV Sonne (SO239, SO240, SO262) and RV Kilo Moana (KM13, KM14, KM16) expeditions. We particularly thank Annika Janssen and Katja Uhlenkott (both DZMB) for their great support and sample management. The authors are grateful to the NOAA/ESRL Physical Sciences Laboratory for providing direct data and information about ENSO. We thank the two anonymous reviewers for their constructive comments that greatly helped in improving the manuscript.

Funding

Funding has been received from the German Federal Ministry of Education and Research (BMBF) as a contribution to the European projects JPI Oceans “MiningImpact” (under contract 03F0707E) and the FLUM (SO240) project (under contract 03G0240A-D). The MANGAN expeditions (KM13, KM14, KM16, SO262) including faunal analysis of sampled material were funded solely by the BGR. Macrofaunal analysis of samples from the SO239 expedition was funded by Ifremer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Kaiser.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

No approval of research ethics committees was required to accomplish the goals of this study because experimental work was conducted with an unregulated invertebrate species.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the “Acknowledgements” section, if applicable.

Data availability

All faunal data generated or analysed during this study are made available via Pangaea (https://doi.pangaea.de/https://doi.org/10.1594/PANGAEA.887207?format=html#lcol16_ds13380747) for SO239 or the ISA Deep Seabed and Ocean Database (DeepData; http://data.isa.org.jm) for the remaining data sets.

Author contribution

SK and PB conducted the data analysis; SK wrote the manuscript with the help of all co-authors; AW, TCK, and LM helped with data generation; AV and PMA conceived and designed the research. All authors read and approved the manuscript.

Additional information

Communicated by N. Sánchez

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a contribution to the Topical Collection Biodiversity in Abyssal Polymetallic Nodule Areas.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 324 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, S., Bonifácio, P., Kihara, T.C. et al. Effects of environmental and climatic drivers on abyssal macrobenthic infaunal communities from the NE Pacific nodule province. Mar. Biodivers. 54, 35 (2024). https://doi.org/10.1007/s12526-024-01427-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-024-01427-7

Keywords

Navigation