Skip to main content
Log in

Multiple nets better explain the diversity of marine fish larvae in equatorial environments

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The quantitative assessment of fish larvae is a key issue in determining the composition of marine food webs. However, there is still a gap in this field regarding how to efficiently sample larvae, particularly in warm and nutrient-poor waters. We evaluated the differences found in larvae caught with two mesh size nets (330 and 500 μm) sampled in the open ocean: shelf break and slope (equatorial SW Atlantic). In total, 792 larvae were sampled, representing 14 orders and 55 families. Overall, larval density was low, and no difference in density was detected between the two net sizes (ind.100 m−3). However, a greater number of taxa (46 families) were found in the smaller net (300 μm) than in the larger (500 μm) (37). Moreover, 30.2% of families were found only in the 330 μm net, whereas 9.4% were found only in the 500 μm net. A total of 60.4% of taxa were common to both nets. Gonostomatidae, Paralepididae, Scombridae, Carangidae, Phosichthyidae, and the reef-associated families Scaridae and Gobiidae were the most abundant taxa in the smaller net. In contrast, Myctophidae, Gobiidae, Gonostomatidae, and Stomiidae were the most abundant in the larger net. We highlight mesophotic reefs and seamounts in the South Atlantic for adult spawning and larval growth, emphasizing the need for conservation actions and appropriate fisheries management. Finally, our results also indicate that the combination of different mesh net sizes provides a better baseline of fish larval diversity in warm and oligotrophic oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS (ANP). Banco de dados de Exploração e Produção. POÇOS—DADOS ESTATÍSTICOS - 2012. Disponível em <www.bdep.gov.br/SITE/acao/download/?id=6236>. Acesso em: 31 Apr. 2021

  • Auth TD, Daly EA, Brodeur RD, Fisher JL (2018) Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob Change Biol 24:259–272. https://doi.org/10.1111/gcb.13872

    Article  ADS  Google Scholar 

  • Ayala-Rodríguez GA et al (2016) Listado taxonómico, aspectos ecológicos y biogeográficos de las larvas de peces del Sistema Arrecifal Veracruzano, Suroeste del Golfo de México (junio 2011-junio 2013). Rev Biol Mar Oceanogr 51(2):255–264. https://doi.org/10.4067/S0718-19572016000200004

    Article  Google Scholar 

  • Barkley RA (1972) Selectivity of towed-net samplers. Fish Bull 70(3):799–820

    Google Scholar 

  • Bezerra-Júnior JL, Diaz XG, Neumann-Leitão S (2011) Diversidade de larvas de peixes das áreas internas e externas do porto de Suape (Pernambuco-Brazil). Trop Oceanogr 39:1–13. https://doi.org/10.5914/tropocean.v39i1.5173

    Article  Google Scholar 

  • Brander K, Thompson AB (1989) Diel differences in avoidance of three vertical profile sampling gears by herring larvae. J Plankton Res 11(4):775–784. https://doi.org/10.1093/plankt/11.4.775

    Article  Google Scholar 

  • Brandini FP, Lopes RM, Gustseit KS, Spach HL, Sassi R (1997) Planctonologia na Plataforma Continental do Brasil - Diagnose e revisão bibliográfica. FEMAR, Rio de Janeiro, 196 p

  • Boehlert GW, Mundy BC (1993) Ichthyoplankton assemblages at seamounts and oceanic islands. Bull Mar Sci 53:336–361

    Google Scholar 

  • Bonecker ACT, Namiki CAP, Castro MS, Campos PN (2014) Catálogo dos estágios iniciais de desenvolvimento dos peixes da bacia de Campos. Série zoologia: guias e manuais de identificação. Sociedade Brasileira de Zoologia, Curitiba: Sociedade Brasileira de Zoologia

  • Carneiro PBM et al (2022) Interconnected marine habitats form a single continental-scale reef system in South America. Sci Rep 12:17359.https://doi.org/10.1038/s41598-022-21341-x

  • Colton JB, Green JR, Byron RR, Frisella JL (1980) Bongo net retention rates as affected by towing speed mesh size. Can J Fish Aquat Sci 37:1980

    Article  Google Scholar 

  • Contreras T et al (2019) Feeding ecology of early life stages of mesopelagic fishes in the equatorial and tropical Atlantic. ICES J Mar Sci 76(3):673–689. https://doi.org/10.1093/icesjms/fsy070

    Article  Google Scholar 

  • Costa ACP, Garcia T, Paiva BP, Ximene-Neto AR, Soares MO (2020) Seagrass and rhodolith beds are important seascapes for the development of fish eggs and larvae in tropical coastal areas. Mar Environ Res 161:105064. https://doi.org/10.1016/j.marenvres.2020.105064

    Article  CAS  PubMed  Google Scholar 

  • DeVries DR, Stein RA (1991) Comparison of three zooplankton samplers: a taxon-specific assessment. J Plankton Res 13:53–59. https://doi.org/10.1093/plankt/13.1.53

    Article  Google Scholar 

  • Dias FJS, Castro BM, Lacerda LD (2018) Tidal and low-frequency currents off the Jaguaribe River estuary (4 S, 37 4′ W), northeastern Brazil. Ocean Dynamics 68:967–985. https://doi.org/10.1007/s10236-018-1172-6

  • Diekmann R, Nellen W, Piatkowski U (2006) A multivariate analysis of larval fish and paralarval cephalopod assemblages at Great Meteor Seamount. Deep Sea Res Part I Oceanogr Res Pap. 53:1635-1657. https://doi.org/10.1016/j.dsr.2006.08.008

  • Dove S, Tiedemann M, Fock HO (2021) Latitudinal transition of mesopelagic larval fish assemblages in the eastern central Atlantic. Deep Sea Res Part I Oceanogr Res Pap 168:103446. https://doi.org/10.1016/j.dsr.2020.103446

  • Garcia TM, Santos NM, Campos CC, Costa GA, Belmonte G, Rossi S, Soares MO (2021) Plankton net mesh size influences the resultant diversity and abundance estimates of copepods in tropical oligotrophic ecosystems. Estuar Coast Shelf Sci 249:107083. https://doi.org/10.1016/j.ecss.2020.107083

    Article  Google Scholar 

  • Guerreiro MA, Martinho F, Baptista J, Costa F, Pardal MA, Primo AL (2021) Function of estuaries and coastal areas as nursery grounds for marine fish early life stages. Mar Environ Res 170:105408. https://doi.org/10.1016/j.marenvres.2021.105408

    Article  CAS  PubMed  Google Scholar 

  • Habtes S, Muller-Karger FE, Roffer MA, Lamkin JT, Muhling BA (2014) A comparison of sampling methods for larvae of medium and large epipelagic fish species during spring SEAMAP ichthyoplankton surveys in the Gulf of Mexico. Limnol Oceanogr Methods 12:86–101. https://doi.org/10.4319/lom.2014.12.86

    Article  Google Scholar 

  • Hanel R et al (2010) Larval fish abundance, composition and distribution at Senghor Seamount (Cape Verde Islands). J Plankton Res 32:1541–1556. https://doi.org/10.1093/plankt/fbq076

    Article  ADS  Google Scholar 

  • Hazin FHV (2009) A pesca na zona econômica exclusiva, ZEE: sua importância para o Brasil. Rev Bras Eng Pesca 1:10–18. https://doi.org/10.18817/repesca.v1i1.22

  • Hernandez FJ, Powers SP, Graham WM (2010a) Seasonal variability in ichthyoplankton abundance and assemblage composition in the northern Gulf of Mexico off Alabama. Fish Bull 108:193–207. https://doi.org/10.1577/T10-001.1

    Article  Google Scholar 

  • Hernandez FJ Jr, Powers SP, Graham WM (2010b) Detailed examination of ichthyoplankton seasonality from a high-resolution time series in the northern Gulf of Mexico during 2004–2006. Trans Am Fish Soc 139(5):1511–1525. https://doi.org/10.1577/T10-001.1

    Article  Google Scholar 

  • Hernandez FJ Jr, Carassou L, Muffelman S, Powers SP, Graham WM (2011) Comparison of two plankton net mesh sizes for ichthyoplankton collection in the northern Gulf of Mexico. Fish Res 108(2–3):327–335. https://doi.org/10.1016/j.fishres.2010.12.029

    Article  Google Scholar 

  • Houde ED, Lovdal JDA (1985) Patterns of variability in ichthyoplankton occurrence and abundance in Biscayne Bay, Florida. Estuar Coast Shelf Sci 20(1):79–103. https://doi.org/10.1016/0272-7714(85)90119-2

    Article  ADS  Google Scholar 

  • Johnson DL, Morse WW (1994) Net extrusion of larval fish: correction factors for 0.333 mm versus 0.505 mm mesh bongo nets. Northwest Atlantic Fisheries Organization Scientific Council Studies 20:85-92

  • Jovane L, Figueiredo JJ, Alves DP, Iacopini D, Giorgioni M, Vannucchi P, Moura DS, Bezerra FHR, Vital H, Rios ILA, Molina EC (2016) Seismostratigraphy of the Ceará Plateau: clues to decipher the Cenozoic evolution of Brazilian equatorial margin. Front Earth Sci 4:90. https://doi.org/10.3389/feart.2016.00090

    Article  ADS  Google Scholar 

  • Kipper D, Bialetzki A, Santin M (2011) Taxonomic composition of the assemblage of fish larvae in the Rosana reservoir, Paranapanema River, Brazil. Biota Neotrop 11:421–426. https://doi.org/10.1590/S1676-06032011000100039

    Article  Google Scholar 

  • Leslie JK, Timmins CA (1989) Double nets for mesh aperture selection and sampling in ichthyoplankton studies. Fish Res 7:225–232. https://doi.org/10.1016/0165-7836(89)90056-8

    Article  Google Scholar 

  • Lima ARA, Barletta M, Costa MF (2016) Seasonal-dial shifts of ichthyoplankton assemblages and plastic debris around an equatorial Atlantic archipelago. Front Environ Sci 4:56. https://doi.org/10.3389/fenvs.2016.00056

    Article  Google Scholar 

  • Llopiz JK et al (2014) Early life history and fisheries oceanography: new questions in a changing world. Oceanography 27:26–41. https://www.jstor.org/stable/24862210. Accessed 2023

  • Longhurst AR, Pauly D (1987) Ecology of tropical oceans. Academic Press, San Diego, CA, pp 1–407

    Book  Google Scholar 

  • Macedo-Soares LCP, Freire AS, Muelbert JH (2012) Small-scale spatial and temporal variability of larval fish assemblages at an isolated oceanic island. Mar Ecol Prog Ser 444:207–222. https://doi.org/10.3354/meps09436

    Article  ADS  Google Scholar 

  • Macedo-Soares LCP, Garcia CAE, Freire AS, Muelbert JH (2014) Large-scale ichthyoplankton and water mass distribution along the South Brazil Shelf. PLoS ONE 9:e91241. https://doi.org/10.1371/journal.pone.0091241

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mafalda-Júnior PDO, Cardoso ATC, Souza CSD (2016) The influence of oceanographic conditions on the spatial and temporal patterns of Pleuronectiforms larvae (Teleostei) in the equatorial Atlantic Ocean. Braz J Oceanogr 64:173–184. https://doi.org/10.1590/S1679-87592016111806402

    Article  Google Scholar 

  • Maltez LC, Neumann-Leitão S, Mafalda-Júnior PO (2014) Dredging impacts on the fish larvae assemblage in the Port of Aratu. Braz J Aquat Sci Technol 18:2014. https://doi.org/10.14210/bjast.v18n2.p1-10

  • Mazzei EF et al (2021) Mechanisms of dispersal and establishment drive a stepping stone community assembly on seamounts and oceanic islands. Mar Biol 168:109. https://doi.org/10.1007/s00227-021-03919-7

    Article  Google Scholar 

  • Medeiros APM, Ferreira BP, Alvarado F, Betancur R, Soares MO, Santos BA (2021) Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol Evol 18:4413–4427. https://doi.org/10.1002/ece3.7336

  • Medeiros C, Macêdo S, Feitosa F, Koening ML (1999) Hydrography and phytoplankton biomass and abundance of north-east Brazilian waters. Arch Fish Mar Res 47(2–3):133–151

    Google Scholar 

  • Miller B, Kendall AW (2009) Early life history of marine fishes. University of California, Berkeley and Los Angeles

    Book  Google Scholar 

  • Moser GH, Smith PE (1993) Larval fish assemblages of the California Current region and their horizontal and vertical distributions across a front. Bull Mar Sci 53:645–691

    Google Scholar 

  • Mota EMT, Lotufo TMC, Garcia TM, Malanski E, Campos CC (2014) Distribuição e abundância do ictioplâncton na região do Porto do Pecém, Estado do Ceará. Arquivos de Ciências do Mar 47:38–44

  • Mota EMT, Garcia TM, Freitas JEP, Soares MO (2017) Composition and cross-shelf distribution of ichthyoplankton in the Tropical Southwestern Atlantic. Reg Stud Mar Sci 14:27–33. https://doi.org/10.1016/j.rsma.2017.05.001

    Article  Google Scholar 

  • Murphy GI, Clutter RI (1972) Sampling anchovy larvae with a plankton purse seine. Fish Bull 70:789–798

    Google Scholar 

  • Neumann-Leitão S et al (2019) Connectivity between coastal and oceanic zooplankton from Rio Grande do Norte in the Tropical Western Atlantic. Front Mar Sci 6:287. https://doi.org/10.3389/fmars.2019.00287

    Article  Google Scholar 

  • Nielsen JM et al (2020) Responses of ichthyoplankton assemblages to the recent marine heatwave and previous climate fluctuations in several Northeast Pacific marine ecosystems. Glob Chang Biol 27:506–520. https://doi.org/10.1111/gcb.15415

    Article  ADS  PubMed  Google Scholar 

  • Nogueira MM, Souza CSD, Mafalda-Junior PO (2012) The influence of abiotic and biotic factors on the composition of Tetraodontiforms larvae (Teleostei) along the Brazilian Northeast Exclusive Economic Zone (1ºN-14ºS) 64:173–184. https://doi.org/10.1590/S1679-87592016111806402

  • Olivar MP, Fortuño Alós JM (1991) Guide to ichthyoplankton of the Southeast Atlantic (Benguela Current region). Instituto de Ciencias del Mar, Barcelona

  • Olivar MP et al (2018) Variation in the diel vertical distributions of larvae and transforming stages of oceanic fishes across the tropical and equatorial Atlantic. Prog Oceanogr 160:83–100. https://doi.org/10.1016/j.pocean.2017.12.005

    Article  ADS  Google Scholar 

  • Ramírez-Martínez GA et al (2022) Daily and monthly ichthyoplankton assemblages of La Azufrada coral reef, Gorgona Island, Eastern Tropical Pacific. Reg Stud Mar Sci 52:102378. https://doi.org/10.1016/j.rsma.2022.102378

    Article  Google Scholar 

  • Richards WJ (2005) Early stages of Atlantic fishes: an identification guide for the western central North Atlantic. CRC Press, Boca Raton

    Book  Google Scholar 

  • Richardson DE, Hare JA, Overholtz WJ, Johnson DL (2010) Development of long-term larval indices for Atlantic herring (Clupea harengus) on the northeast US continental shelf. ICES J Mar Sci 67:617–627. https://doi.org/10.1093/icesjms/fsp276

    Article  Google Scholar 

  • Robertson DR (1990) Differences in the seasonalities of spawning and recruitment of some small neotropical reef fishes. J Exp Mar Biol Ecol 144:49–62. https://doi.org/10.1016/0022-0981(90)90019-9

    Article  Google Scholar 

  • Santana JR, Costa AED, Veleda D, Schwamborn SHL, Mafalda-Junior PO, Schwamborn R (2020a) Ichthyoplankton community structure on the shelf break off northeastern Brazil. Anais da Academia Brasileira de Ciências 92. https://doi.org/10.1590/0001-3765202020180851

  • Santana JR, Costa AE, Neumann-Leitão S, Mafalda-Júnior PDO, Veleda D, Schwamborn SH (2020b) Spatial variability of the ichthyoneuston around oceanic islands at the tropical Atlantic. J Sea Res 164:101928. https://doi.org/10.1016/j.seares.2020.101928

    Article  Google Scholar 

  • Schobernd CM, McManus MC, Lyczkowski-Shultz J, Bacheler NM, Drass DM (2018) Extrusion of fish larvae from SEAMAP plankton sampling nets: a comparison between 0.333-mm and 0.202-mm mesh nets. Fish Bull 116:240–254. https://doi.org/10.7755/FB.116.3-4.3

    Article  Google Scholar 

  • Shima M, Bailey KM (1994) Comparative analysis of ichthyoplankton sampling gear for early life stages of walleye pollock (Theragra chalcogramma). Fish Oceanogr 3(1):50–59. https://doi.org/10.1111/j.1365-2419.1994.tb00047.x

    Article  Google Scholar 

  • Skjoldal HR et al (2013) Intercomparison of zooplankton (net) sampling systems: results from the ICES/GLOBEC sea-going workshop. Prog Oceanogr 108:1–42. https://doi.org/10.1016/j.pocean.2012.10.006

    Article  ADS  Google Scholar 

  • Smith PE, Counts RC, Clutter RI (1968) Changes in filtering efficiency of plankton nets due to clogging under tow. Conseil International pour l’Éxploration de la Mer 32:232–248

    Article  Google Scholar 

  • Smith PE, Richardson SL (1977) Standard techniques for pelagic fish egg and larva surveys. FAO Fisheries Technical Paper 175: 1–10

  • Soares MO et al (2019a) Thermal stress and tropical reefs: mass coral bleaching in a stable temperature environment? Mar Biodivers 49:2921–292. https://doi.org/10.1007/s12526-019-00994-4

    Article  Google Scholar 

  • Soares MO, Lucas CC (2018) Towards large and remote protected areas in the South Atlantic Ocean: St. Peter and St. Paul’s Archipelago and the Vitória-Trindade seamount chain. Mar Policy 93:101–103. https://doi.org/10.1016/j.marpol.2018.04.004

    Article  Google Scholar 

  • Soares MO, Tavares TCL, Carneiro PBM (2019b) Mesophotic ecosystems: distribution, impacts and conservation in the South Atlantic. Divers Distrib 25:255–268. https://doi.org/10.1111/ddi.12846

    Article  Google Scholar 

  • Somarakis S (1998) Catchability and retention of larval European anchovy, Engraulis encrasicolus. Fish Bull 96: 917

  • Souza CS, Barreiro AS, Mafalda-Júnior P (2010) Padrões espaciais e temporais de larvas de Scaridae (Pisces: Perciformes) no nordeste do Brasil e suas relações com os fatores oceanográficos. Braz J Aquat Sci Technol 14:1–11 https://doi.org/10.14210/bjast.v14n2.p1-11

  • Souza CS, Mafalda PO (2019) Large-scale spatial and temporal variability of larval fish assemblages in the tropical Atlantic Ocean. Anais da Academia Brasileira de Ciências 91. https://doi.org/10.1590/0001-3765201820170567

  • Stehle M, Dos Santos A, Queiroga H (2007) Comparison of zooplankton sampling performance of Longhurst-Hardy Plankton Recorder and bongo nets. J Plankton Res 29:169–177. https://doi.org/10.1093/plankt/fbm004

    Article  Google Scholar 

  • Total E&P do Brasil Ltda, Premier Oil do Brasil Petróleo e Gás Ltda. e Chevron Brasil Upstream Frade Ltda (2020) Projeto de Baseline Integrado para a Margem Equatorial Brasileira (Processo IBAMA Nª02022.001025/2014–10)

  • Tranter DJ, Smith PE (1968) Filtration performance. In: Tranter DJ, Fraser, JH (eds) Zooplankton Sampling, 1st edn. United Nations Educational, Scientific and Cultural organization, Paris, pp 27–56

  • Voituriez B, Herbland A (1979) The use of the salinity maximum of the Equatorial Undercurrent for estimating nutrient enrichment and primary production in the Gulf of Guinea. Deep Sea Res Part A Oceanogr Res Pap 26: 77-83. https://doi.org/10.1016/0198-0149(79)90087-6

  • Weiss G, Souza JAF (1977) Desova invernal de Engraulis anchoita na costa sul do Brasil em 1970 e 1976. Atlantica 2:5–24

    Google Scholar 

Download references

Acknowledgements

The authors thank the Plankton lab team (LABOMAR-UFC), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for granting the scholarship during the master's degree, and the companies Total E&P do Brasil Ltda, Premier Oil do Brasil Petróleo e Gás Ltda., and Chevron Brasil Upstream Frade Ltda for sampling in the Ceará Basin, under the “Projeto de Baseline Integrado para a Margem Equatorial Brasileira (Processo IBAMA Nª02022.001025/2014-10)”. These companies provided samples and environmental data to Scientific Collection Profa. Mariana de Menezes of Institute of Marine Sciences (LABOMAR—UFC), which allowed taxonomic and ecological analyses by our research group. The deposition of biological samples in academic collections in the region of origin/affected by oil and gas companies is predicted by current environmental laws. We thank CNPq (Grants no. 442337/2020-5 and 313518/2020-3), CAPES PRINT, FUNCAP (Chief Scientist Program/PELD Costa Semiárida do Brasil), and the Alexander von Humboldt Foundation (AVH) for their financial support for research and fellowships. The authors would also like to thank the reviewers for their comments which helped to improve the text.

Funding

This research has not been funded. (The authors would like to highlight that the grants awarded to the researchers by the respective universities are listed in the “acknowledgements” section).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cecília Pinho Costa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

No animal testing was performed during this study.

Sampling and field studies

All necessary permits for sampling and observational field studies have been obtained by the authors from the competent authorities and are mentioned in the acknowledgements, if applicable. The study is compliant with CBD and Nagoya protocols.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author contribution

ACPC: conceptualization, data curation, writing—original draft, writing—review and editing, supervision. JPVAJ: writing—original draft, writing—original draft, writing—review and editing. TMG: writing—original draft, writing—original draft, writing—review and editing. MOS: writing—original draft, writing—review and editing, data curation.

Additional information

Communicated by S. E. Lluch-Cota

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, A.C.P., Júnior, J.P.V.A., Garcia, T.M. et al. Multiple nets better explain the diversity of marine fish larvae in equatorial environments. Mar. Biodivers. 54, 15 (2024). https://doi.org/10.1007/s12526-023-01402-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-023-01402-8

Keywords

Navigation