Skip to main content

Advertisement

Log in

Yellow snapper (Lutjanus argentiventris) connectivity in the Southern Gulf of California

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

We analysed the genetic connectivity and larval transport routes of Lutjanus argentiventris to test if eddies could transport coastal-demersal fish larvae between the peninsular and mainland coasts of the Southern Gulf of California. Larval transport was estimated using the ROMS oceanographic model during the main spawning period (July–August). We used 12 microsatellite loci to assess genetic diversity, population structure and gene flow estimates in 233 L. argentiventris samples from nine sites. The oceanographic model suggested the existence of a stream flow and eddies that maintain connectivity in the Southern Gulf of California. The global AMOVA and paired FST showed no significant genetic differentiation among the sites, and the estimations of the number of migrants indicated moderate to high gene flow among locations. However, after testing five demographic scenarios of connectivity with a coalescent sampler, our results supported the presence of a metapopulation structure with source-sink dynamics. We discuss the challenges to reconcile our results considering the assumptions of the different analyses and the characteristics of marine metapopulations. Connectivity of L. argentiventris could be representative of other costal-demersal species with a similar life history and spawning season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdo de la Parra MI, Rodríguez-Ibarra LE, Rodríguez Montes de Oca G, Velasco-Blando G, Ibarra-Caso L (2015) Estado actual del cultivo de larvas del pargo flamenco (Lutjanus guttatus). Lat Am J Aquat Res 43:415–423

  • Aburto-Oropeza O, Dominguez-Guerrero I, Cota-Nieto J, Plomozo-Lugo T (2009) Recruitment and ontogenetic habitat shifts of the yellow snapper (Lutjanus argentiventris) in the Gulf of California. Mar Biol 156:2461–2472

    PubMed  PubMed Central  Google Scholar 

  • Amos W, Hoffman JI, Frodsham A et al (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14

    CAS  Google Scholar 

  • Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: International AAAI conference on weblogs and social media. AAAI Press, San Jose, California

  • Beerli P (2009) How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In: Populations Genetics for Animal Conservation. p 395

  • Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326

    PubMed  PubMed Central  Google Scholar 

  • Beerli P, Mashayekhi S, Sadeghi M, Khodaei M, Shaw K (2019) Population genetic inference with MIGRATE. Curr Protoc Bioinformatics 68:e87

  • Beldade R, Jackson AM, Cudney-Bueno R et al (2014) Genetic structure among spawning aggregations of the gulf coney Hyporthodus acanthistius. Mar Ecol Prog Ser 499:193–201

    Google Scholar 

  • Bernatchez L, Wellenreuther M, Araneda et al (2017) Harnessing the power of genomics to secure the future of seafood. Trends Ecol Evol 32:665–680

  • Ciannelli L, Fisher JAD, Skern-Mauritzen M et al (2013) Theory, consequences and evidence of eroding population spatial structure in harvested marine fishes: a review. Mar Ecol Prog Ser 480:227–243

    Google Scholar 

  • Cisneros-Mata MA, Munguía-Vega A, Rodríguez-Félix D et al (2018) Genetic diversity and metapopulation structure of the brown swimming crab (Callinectes bellicosus) along the coast of Sonora, Mexico: implications for fisheries management. Fish Res 212:97–106

    Google Scholar 

  • Claro R, Lindeman KC (2008) Biología y manejo de los pargos (Lutjanidae) en el Atlántico occidental, Instituto. La Habana, Cuba

  • Contreras-Catala F, Sanchez-Velasco L, Lavin MF, Godinez VM (2012) Three-dimensional distribution of larval fish assemblages in an anticyclonic eddy in a semi-enclosed sea (Gulf of California). J Plankton Res 34:548–562

    Google Scholar 

  • Crandall ED, Toonen RJ, Laboratory T, Selkoe KA (2018) A coalescent sampler successfully detects biologically meaningful population structure overlooked by F-statistics. Evol Appl 12:255–265

    PubMed  PubMed Central  Google Scholar 

  • Drass DM, Bootes KL, Lyczkowski-Shultz J et al (2000) Larval development of red snapper, Lutjanus campechanus, and comparisons with co-occurring snapper species. Fish Bull 98:507–527

    Google Scholar 

  • Emata AC, Eullaran B, Bagarinao TU et al (1994) Induced spawning and early life description of the mangrove red snapper, Lutjanus argentimaculatus. Aquaculture 121:381–387

    Google Scholar 

  • Erisman B, Mascarenas I, Paredes G et al (2010) Seasonal, annual, and long-term trends in commercial fisheries for aggregating reef fishes in the Gulf of California, Mexico. Fish Res 106:279–288

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Fischer W, Krupp F, Schneider W et al (1995) Guía FAO para la identificación de especies para los fines de pesca. Pacífico centro-oriental. Volumen III. Vertebrados - Parte 2. Roma

  • Fisher R, Bellwood DR, Job SD (2000) Devlopment of swimming abilities in reef fish larvae. Mar Ecol Prog Ser 202:163–173

    Google Scholar 

  • Fogarty MJ, Botsford LW (2007) Population connectivity and spatial management of marine fisheries. Oceanography 20:112–123

    Google Scholar 

  • Freeland JR (2006) Molecular ecology. John Wiley and Sons, Hoboken, pp 388

  • Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Methods Enzymol 395:202–222

    CAS  PubMed  Google Scholar 

  • Goethel DR, Berger AM (2017) Accounting for spatial complexities in the calculation of biological reference points: effects of misdiagnosing population structure for stock status indicators. Can J Fish Aquat Sci 74:1878–1894

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Green AL, Maypa AP, Almany GR et al (2015) Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol Rev 90:1215–1247

    PubMed  Google Scholar 

  • Haidvogel DB, Arango HG, Hedstrom K et al (2000) Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans 32:239–281

    Google Scholar 

  • Hammann GM, Baumgartner TR, Badan-Dangon A (1988) Coupling of the Pacific Sardine (Sardinops sagax caeruleus) life cycle with the Gulf of California Pelagic Environment. CalCOFI Rep XXIX:102–109

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Google Scholar 

  • Hedgecock D, Barger PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79

    Google Scholar 

  • Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assesment of connectivity among marine populations. Bull Mar Sci 70:273–290

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed  PubMed Central  Google Scholar 

  • Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890

    Google Scholar 

  • Kritzer JP, Sale PF (2006) The metapopulations ecology of coral reef fishes. In: Marine Metapopulations. pp 31–67

  • Lavín MF, Castro R, Beier E, Godínez VM (2013) Mesoscale eddies in the southern Gulf of California during summer: characteristics and interaction with the wind stress. J Geophys Res Ocean 118:1367–1381

    Google Scholar 

  • Lavín MF, Castro R, Beirer E et al (2014) Surface circulation in the Gulf of California in summer from surface drifters and satellite images (2004-2006). J Geophys Res Ocean Atmos 119:4278–4290

    Google Scholar 

  • Leis JM, Hay AC, Lockett MM et al (2007) Ontogeny of swimming speed in larvae of pelagic-spawning, tropical, marine fishes. Mar Ecol Prog Ser 349:255–267

    Google Scholar 

  • Lodeiros C, Soria G, Valentich-Scott P et al (2016) Spondylids of eastern Pacific Ocean. J Shellfish Res 35:279–293

    Google Scholar 

  • Lopera-Barrero NM, Povh JA, Ribeiro RP et al (2008) Comparación de protocolos de extracción de ADN con muestras de aleta y larva de peces: extracción modificada con cloruro de sodio. Cien Inv Agr 35:77–86

    Google Scholar 

  • Marinone SG (2012) Seasonal surface connectivity in the Gulf of California. Estuar Coast Shelf Sci 100:133–141

    Google Scholar 

  • MSC (2014) Marine Stewardship Council Fisheries Certifications Requirements and Guidance

  • Munguía-Vega A, Klimova A, Culver M (2013) New microsatellites loci isolated via next-generation sequencing for two endangered pronghorn from the Sonoran Desert. Conserv Genet Resour 53:1689–1699

    Google Scholar 

  • Munguia-Vega A, Jackson A, Marinone SG et al (2014) Asymmetric connectivity of spawning aggregations of a commercially important marine fish using a multidisciplinary approach. PeerJ 2:511

    Google Scholar 

  • Munguia-Vega A, Green AL, Suarez-Castillo AN et al (2018a) Ecological guidelines for designing networks of marine reserves in the unique biophysical environment of the Gulf of California. Rev Fish Biol Fish 28:749–776

  • Munguia-Vega A, Marinone SG, Paz-Garcia DA et al (2018b) Anisotropic larval connectivity and metapopulation structure driven by directional oceanic currents in a marine fish targeted by small-scale fisheries. Mar Biol 165:16

    Google Scholar 

  • Ovenden JR, Berry O, Welch DJ, Buckworth RC, Dichmont CM (2015) Ocean's eleven: a critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish 16:125–159

    Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assiggment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    CAS  PubMed  Google Scholar 

  • Parés-Sierra A, Flores-Morales AL, Gómez-Valdivia F (2018) An efficient Markovian algorithm for the analysis of ocean currents. Environ Model Softw 103:158–168

    Google Scholar 

  • Pascual M, Rives B, Schunter C, Macpherson E (2017) Impact of life history traits on gene flow: a multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS ONE 12:1–20

  • Paz-García DA, Munguía-Vega A, Plomozo-Lugo T, Hudson-Weaver A (2016) Characterization of 32 microsatellite loci for the Pacific red snapper Lutjanus peru through next generation sequencing. Mol Biol Rep 44:251–256

    Google Scholar 

  • Peakall R, Smouse PE (2012) GenALEx 6.5: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pegau WS, Boss E, Martínez A (2002) Ocean color observations of eddies during the summer in the Gulf of California. Geophys Res Lett 29:29–31

    Google Scholar 

  • Piñón A, Amezcua F, Duncan N (2009) Reproductive cycle of female yellow snapper Lutjanus argentiventris (Pisces, Actinopterygii, Lutjanidae) in the SW Gulf of California: gonadic stages, spawning seasonality and length at sexual maturity. J Appl Ichthyol 25:18–25

    Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    CAS  PubMed  Google Scholar 

  • Plomozo-Lugo T, Weaver AH, González-Cuellar OT (2018) Resultados del esfuerzo de monitoreo pesquero y de las bitácoras pesqueras de 2016 y 2017. 5to taller de Técnicos Pesqueros. La Paz, B.C.S

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution (N Y) 43:258–275

    Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci U S A 94:9197–9201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 3:248–249

    Google Scholar 

  • Rice WER (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    PubMed  Google Scholar 

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol 6:600–602

    Google Scholar 

  • Sánchez-Velasco L, Lavín MF, Jiménez-Rosenberg SA et al (2013) Three-dimensional distribution of fish larvae in a cyclonic eddy in the Gulf of California during the summer. Deep Sea Res I Oceanogr Res Pap 75:39–51

    Google Scholar 

  • Santiago-García MW, Marinone SG, Velasco-Fuentes OU (2014) Three-dimensional connectivity in the Gulf of California based on a numerical model. Prog Oceanogr 123:64–73

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    CAS  PubMed  Google Scholar 

  • Selkoe KA, D’Aloia CC, Crandall ED et al (2016) A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser 554:1–19

  • Slatkin M (1985) Rare alleles as indicators of gene flow. Evolution 39:53–65

    PubMed  Google Scholar 

  • Soria G, Munguía-Vega A, Marinone SG et al (2012) Linking bio-oceanography and population genetics to assess larval connectivity. Mar Ecol Prog Ser 463:159–175

    Google Scholar 

  • Stobutzki IC, Bellwood DR (1997) Sustained swimming abilities of the late pelagic stages of coral reef fishes. Mar Ecol Prog Ser 149:35–41

    Google Scholar 

  • Teske PR, Sandoval-Castillo J, van Sebille E et al (2016) Oceanography promotes self-recruitment in a planktonic larval disperser. Sci Rep 6:1–8

    Google Scholar 

  • Tinhan T, Erisman B, Aburto-Oropeza O et al (2014) Residency and seasonal movements in Lutjanus argentiventris and Mycteroperca rosacea at Los Islotes Reserve, Gulf of California. Mar Ecol Prog Ser 501:191–206

    Google Scholar 

  • Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landsc Ecol 23:19–36

    Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:1–12

    Google Scholar 

  • Valadez-Rodríguez JA (2017) Caracterización de microsatélites en el pargo lunarejo, Lutjanus guttatus. B.S. dissertation. Tecnológico Nacional de México: Instituto Tecnológico de la Paz, B.C.S

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham C (1984) Estimating F-statistics for the analysis of population. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Zapata FA, Herrón PA (2002) Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces : Lutjanidae). Mar Ecol Prog Ser 230:295–300

    Google Scholar 

  • Zavala-Sansón L (2015) Surface dispersion in the Gulf of California. Prog Oceanogr 137:24–37

    Google Scholar 

Download references

Acknowledgments

We thank Ricardo Pérez-Enríquez and Janeth Valadez-Rodríguez who provided microsatellites of L. guttatus. José Francisco Domínguez-Contreras provided technical support in the laboratory. We also thank Diana Cecilia Escobedo Urías from CIDIIR-Guasave for providing housing and transportation during our stay in Sinaloa, Vicente Hernández C. (CRIP Mazatlán) and the fishermen of cooperative “Horacio Fierro” at Huitusi and “San Carlos” at Topolobampo for providing support during sampling. Also, we thank Kristen Gruenthal who provided editing services and the anonymous reviewers who improved the paper.

Funding

This research was supported by CONACyT grants (CB2015-257019) from Noé Díaz-Viloria and (CB2014-236864-T) from Laura Sánchez-Velasco, IPN-SIP (20160514, 20170290, 20180339, 20195461) grants to Noé Díaz-Viloria, and The David and Lucile Packard Foundation grants to the PANGAS Science Coordination. Nicole Reguera-Rouzaud was a recipient of a BEIFI-IPN and a CONACYT scholarship (no. 589502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Díaz-Viloria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Sampling and field studies

The samples were obtained from the fishing cooperatives of the region. All necessary permits for sampling were obtained (PPF/DGOPA-057/18).

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. The most relevant information are in supplementary information file. We generated all the data during this research. We did not use public data.

Author contribution

NRR conducted experiments, analyzed data and wrote the manuscript. NDV conceived and designed research, wrote manuscript and contributed new reagents, LSV conceived and designed research, ALF and APS conducted experiments, OAO contributed economically in taking samples, and AMV analyzed data and wrote the manuscript. All authors read and approved the manuscript.

Additional information

Communicated by R. Thiel

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 389 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reguera-Rouzaud, N., Díaz-Viloria, N., Sánchez-Velasco, L. et al. Yellow snapper (Lutjanus argentiventris) connectivity in the Southern Gulf of California. Mar. Biodivers. 50, 54 (2020). https://doi.org/10.1007/s12526-020-01070-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12526-020-01070-y

Keywords

Navigation