Skip to main content
Log in

Mangrove Carbon Pool Patterns in Maharashtra, India

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This study attempts to investigate whether the mangroves of Maharashtra, India, are acting as a source or sink of carbon. Additionally, efforts were made to develop the empirical model using ground-based tree biomass and satellite-based indices to estimate above-ground biomass (AGB) for the state of Maharashtra for the year 2018–19. Total of 44 geotagged, well-distributed sample plots (0.1 ha each) were laid down to measure the tree girth and height (of all the trees) of different mangrove species. The available biomass equations were used to estimate the AGB at the plot level. Normalized Difference Vegetation Index (NDVI) and plot-wise AGB correlation were tested for minimum, maximum, sum and amplitude of stacked monthly NDVI. The strongest correlation of AGB was observed with maximum NDVI and was therefore used in regression analysis to estimate the AGB and carbon present in mangroves. Carbon values ranged from 2.78 to 249.64 t C ha−1. Carbon sequestration was estimated using statistical method by estimating the difference in total carbon content within the mangroves between the years 2005–06 and 2018–19. Total carbon content was determined by multiplying per hectare AGB with the mangrove area for the respective years. In 2005–06, the carbon pool in the state amounted to 1.08 × 106 tonnes, which increased to 1.32 × 106 tonnes by 2018–19. The mangroves in Maharashtra sequestered a total of 0.24 × 106 tonnes of carbon from 2005–06 to 2018–19, confirming their role as a carbon sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ajai, N.S., Tamilarasan, V., Chauhan, H.B., Bahuguna, A., Gupta, C., Rajawat, A.S., Chaudhury, N.R., Kumar, T., Rao, R.S., Bhattacharya, S. & Ramakrishnan, R. (2012). Coastal zones of India. Ahmedabad: Space Applications Centre, (ISRO). https://doi.org/10.1080/10095020.2017.1333715

  • Ajonina, G., Kairo, J.G., Grimsditch, G., Sembres, T., Chuyong, G., Mibog, D. E., Nyambane, A. & FitzGerald, C. (2014). Carbon pools and multiple benefits of mangroves in Central Africa: Assessment for REDD+. 72pp. United Nations Environment Program.

  • Alatorre, L. C., Carrillos, S. S., Beltran, S. M., Medina, R. J., Olave, M. E. T., Bravo, L. C., Weibe, L. C., Grandos, A., & Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313–322. https://doi.org/10.4155/cmt.12.20

    Article  CAS  Google Scholar 

  • Alongi, D. M., & Mukhopadhyay, S. K. (2015). Contribution of mangroves to coastal carbon cycling in low latitude seas. Agricultural and Forest Meteorology, 213, 266–272. https://doi.org/10.1016/j.agrformet.2014.10.005.

    Article  ADS  Google Scholar 

  • Banerjee, K., Mitra, A., & Villasante, S. (2021). Carbon cycling in mangrove ecosystem of Western Bay of Bengal (India). Sustainability, 13(12), 6740. https://doi.org/10.3390/su13126740.

    Article  Google Scholar 

  • Bijayalaxmi Devi, N., & Lepcha, N. T. (2023). Carbon sink and source function of Eastern Himalayan forests: Implications of change in climate and biotic variables. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-023-11460-x

    Article  PubMed  Google Scholar 

  • Blasco, F., Aizpuru, M., & Gers, C. (2001). Depletion of the mangroves of continental Asia. Wetl. Ecol. Maag., 9, 255–266. https://doi.org/10.1023/A:1011169025815.

    Article  Google Scholar 

  • Brahma, B., Nath, A. J., Deb, C., Sileshi, G. W., Sahoo, U. K., & Das, A. K. (2021). A critical review of forest biomass estimation equations in India. Trees, Forests and People, 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098.

    Article  Google Scholar 

  • Brown, S. (1997). Estimating biomass and biomass change of tropical forests: A primer. FAO- Food and Agriculture Organization of the United Nations, 134, 3–6.

    ADS  Google Scholar 

  • Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riera, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99. https://doi.org/10.1007/s00442-005-0100-x

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x.

    Article  PubMed  Google Scholar 

  • Chen, L., Letu, H., Fan, M., Shang, H., Tao, J., Wu, L., & Zhang, T. (2022). An introduction to the Chinese highresolution Earth observation system: Gaofen-1~ 7 civilian satellites. Journal of Remote Sensing. https://doi.org/10.34133/2022/9769536.

    Google Scholar 

  • Chevrel, M., Courtois, M. I. C. H. E. L., & Weill, G. (1981). The SPOT satellite remote sensing mission. Photogrammetric Engineering and Remote Sensing, 47, 1163–1171.

    ADS  Google Scholar 

  • Dharmawan, I. W. S., & Siregar, C. A. (2008). Karbon tanah dan pendugaan karbon tegakan Avicennia marina (Forsk.) Vierh. di Ciasem, Purwakarta. Jurnal Penelitian Hutan Dan Konservasi Alam, 5(4), 317–328. https://doi.org/10.20886/jphka.2008.5.4.317-328.

    Article  Google Scholar 

  • Dial, G., Bowen, H., Gerlach, F., Grodecki, J., & Oleszczuk, R. (2003). IKONOS satellite, imagery, and products. Remote sensing of Environment, 88(1-2), 23–36.

    Article  ADS  Google Scholar 

  • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. https://doi.org/10.1038/ngeo1123

    Article  ADS  CAS  Google Scholar 

  • FSI. (1996). Volume equations for forests of India, Nepal and Bhutan. Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 045023. https://doi.org/10.1088/1748-9326/2/4/045023

    Article  ADS  Google Scholar 

  • Gnanamoorthy, P., Song, Q., Zhao, J., Zhang, Y., Liu, Y., Zhou, W., Sha, L., Fan, Z., & Deb Burman, P. K. (2021). Altered albedo dominates the radiative forcing changes in a subtropical forest following an extreme snow event. Global Change Biology, 27(23), 6192–6205. https://doi.org/10.1111/gcb.15885.

    Article  CAS  PubMed  Google Scholar 

  • Gnanappazham, L. (2020). Report on the project on Monitoring the health of Mangroves of Maharashtra state using Near real time satellite remote sensing data for period 2019–2020, IIST, doc No. IIST\MC\AnnRt\2019–20. https://doi.org/10.1016/j.seares.2021.102162.

  • Google Earth. (2022). Satellite Imagery of Palghar, Mumbai, Thane, Raigarh, Ratnagiri, Sindhudurg, India. Google Earth. https://www.google.com/earth/.

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031

    Article  ADS  Google Scholar 

  • Goward, S., Arvidson, T., Williams, D., Faundeen, J., Irons, J., & Franks, S. (2006). Historical record of Landsat global coverage. Photogrammetric Engineering & Remote Sensing, 72(10), 1155–1169. https://doi.org/10.14358/PERS.72.10.1155.

    Article  Google Scholar 

  • Gunasekaran, P., Kankara, R. S., & Selvan, S. C. (2022). Mapping shoreline changes of the pocket beaches using Remote Sensing and GIS–A study in the north Konkan sector, west coast of India. Journal of Earth System Science, 131(4), 209. https://doi.org/10.1007/s12040-022-01945-7

    Article  ADS  Google Scholar 

  • Harishma, K. M., Sandeep, S., & Sreekumar, V. B. (2020). Biomass and carbon stocks in mangrove ecosystems of Kerala, southwest coast of India. Ecological Processes, 9(1), 1–9. https://doi.org/10.1186/s13717-020-00227-8.

    Article  Google Scholar 

  • Harris, N. L., Gibbs, D. A., Baccini, A., Birdsey, R. A., De Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M. C., Herold, M., Houghton, R. A., & Potapov, P. V. (2021). Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 11(3), 234–240. https://doi.org/10.1038/s41558-020-00976-6.

    Article  ADS  Google Scholar 

  • https://earthexplorer.usgs.gov

  • Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., Saleous, N., & Morisette, J. T. (2002). An overview of MODIS Land data processing and product status. Remote sensing of Environment, 83(1-2), 3–15.

    Article  ADS  Google Scholar 

  • Kale, M. P., Chavan, M. E., & Lele, N. V. (2015). Restoration prioritisation at landscape level considering biodiversity, Carbon and Community Criteria with Special Reference to CDM/REDD+ - A Geomatics Perspective.

  • Kale, M. P., Ravan, S. A., Roy, P. S., & Singh, S. (2009). Patterns of carbon sequestration in forests of Western Ghats and study of applicability of remote sensing in generating carbon credits through afforestation/reforestation. Journal of the Indian Society of Remote Sensing, 37, 457–471. https://doi.org/10.1007/s12524-009-0035-5.

    Article  Google Scholar 

  • Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands, 31, 343–352. https://doi.org/10.1007/s13157-011-0148-9.

    Article  Google Scholar 

  • Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471–477. https://doi.org/10.1017/S0266467405002476.

    Article  Google Scholar 

  • Kumar, T., Panigrahy, S., Kumer, P., & Parihar, J. S. (2013). Classification of floristic composition of mangrove forests using hyperspectral data: Case study of Bhitarkanika National Park, India. Journal of Coastal Conservation, 17, 121–132. https://doi.org/10.1007/s11852-012-0223-2.

    Article  Google Scholar 

  • Lele, N., Kripa, M. K., Panda, M., et al. (2021). Seasonal variation in photosynthetic rates and satellite-based GPP estimation over mangrove forest. Environmental Monitoring and Assessment, 193, 61. https://doi.org/10.1007/s10661-021-08846-0

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Li, X. B., Chen, Y. H., & Ying, G. (2007). Temporal responses vegetation to climate variables in temperate steppe of northern China Chinese. Journal of Plant Ecology, 31(6), 1054. https://doi.org/10.17521/cjpe.2007.0133

    Google Scholar 

  • Ma, S., He, F., Tian, D., Zou, D., Yan, Z., Yang, Y., Zhou, T., Huang, K., Shen, H., & Fang, J. (2018). Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences, 15(3), 693–702. https://doi.org/10.5194/bg-15-693-2018.

    Article  ADS  CAS  Google Scholar 

  • Mandal, R., & Bar, R. (2018). Mangroves for Building Resilience to Climate Change. Apple Academic Press.

    Book  Google Scholar 

  • Matsui, N., Suekuni, J., Nogami, M., Havanond, S., & Salikul, P. (2010). Mangrove rehabilitation dynamics and soil organic carbon changes as a result of full hydraulic restoration and re-grading of a previously intensively managed shrimp pond. Wetlands Ecology and Management, 18, 233–242. https://doi.org/10.1007/s11273-009-9162-6.

    Article  Google Scholar 

  • Meiyappan, P., Roy, P. S., Sharma, Y., Ramachandran, R. M., Joshi, P. K., DeFries, R. S., & Jain, A. K. (2017). Dynamics and determinants of land change in India: Integrating satellite data with village socioeconomics. Regional Environmental Change, 17, 753–766. https://doi.org/10.1007/s10113-016-1068-2

    Article  PubMed  Google Scholar 

  • Mendiratta, P. & Gedam, S., (2015). Observing morphological changes in natural land form through archived satellite images: Case study of the Thane Creek. In 2015 International Conference on Technologies for Sustainable Development (ICTSD) (pp. 1–6). IEEE. https://doi.org/10.1109/ICTSD.2015.7095871

  • Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., & Potin, P. (2015). The Sentinel-1 mission: New opportunities for ice sheet observations. Remote Sensing, 7(7), 9371–9389. https://doi.org/10.3390/rs70709371

    Article  ADS  Google Scholar 

  • Nam, V. N. (2009). Personal Communication, in preliminary assessment of biomass and carbon content of mangroves in Solomon Islands. Vanuatu, Fiji, Tonga and Samoa. Duke N. (James Cook University: Center for Tropical Water & Aquatic Ecosystem Research)

  • Nguyen, H. H., & Nguyen, T. T. H. (2021). Above-ground biomass estimation models of mangrove forests based on remote sensing and field-surveyed data: Implications for C-PFES implementation in Quang Ninh Province, Vietnam. Regional Studies in Marine Science, 48, 101985. https://doi.org/10.1016/j.rsma.2021.101985.

    Article  Google Scholar 

  • Nguyen, L. D., Nguyen, C. T., Le, H. S., & Tran, B. Q. (2019). Mangrove mapping and above-ground biomass change detection using satellite images in coastal areas of Thai Binh Province, Vietnam. Forest and Society, 3(2), 248–261. https://doi.org/10.24259/fs.v3i2.7326

    Article  Google Scholar 

  • Nyanga, C. (2020). The role of mangroves forests in decarbonizing the atmosphere. Carbon-Based Material for Environmental Protection and Remediation. https://doi.org/10.5772/intechopen.92249

    Article  Google Scholar 

  • Opelele, O. M., Yu, Y., Fan, W., Chen, C., & Kachaka, S. K. (2021). Biomass estimation based on multilinear regression and machine learning algorithms in the Mayombe tropical forest, in the democratic republic of Congo. Applied Ecology and Environmental Research, 19, 359–377. https://doi.org/10.15666/aeer/1901_359377.

    Article  Google Scholar 

  • Pambudi, G. P. (2011). Pendugaan biomassa beberapa kelas umur tanaman jenis Rhizophora apiculata Bl. pada areal PT. Bina Ovivipari Semesta Kabupaten Kubu Raya, Kalimantan Barat. [Skripsi]. Bogor (ID): Departemen Konservasi Sumberdaya Hutan dan Ekowisata, Fakultas Kehutanan Institut Pertanian Bogor. http://repository.ipb.ac.id/handle/123456789/47632.

  • Pandya, M. R., Pathak, V. N., Shah, D. B., & Singh, R. P. (2014). Retrieval of surface reflectance using SACRS2: A scheme for atmospheric correction of ResourceSat-2 AWiFS data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL–8, 865–868. https://doi.org/10.5194/isprsarchives-XL-8-865-2014.

    Article  Google Scholar 

  • Petersson, H., Holm, S., Stahl, G., Alger, D., Fridman, J., Lehtonen, A., Lundström, A., & Makipaa, R. (2012). Individual tree biomass equations or biomass expansion factors for assessment of carbon stock changes in living biomass–A comparative study. Forest Ecology and Management, 270, 78–84. https://doi.org/10.1016/j.foreco.2012.01.004.

    Article  Google Scholar 

  • Poli, D., Wolff, K., & Gruen, A. (2009). Evaluation of Worldview-1 stereo scenes. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(1), 202.

    Google Scholar 

  • Ragavan, P., Kumar, S., Kathiresan, K., Mohan, P. M., Jayaraj, R. S. C., Ravichandaran, K., & Rana, T. S. (2021). Biomass and vegetation carbon stock in mangrove forests of the Andaman Islands, India. Hydrobiologia, 848, 4673–4693. https://doi.org/10.1007/s10750-021-04651-5.

    Article  CAS  Google Scholar 

  • Rani, V., Nandan, S. B., Jayachandran, P. R., Preethy, C. M., Sreelekshmi, S., Joseph, P., & Asha, C. V. (2023). Carbon stock in biomass pool of fragmented mangrove habitats of Kochi, Southern India. Environmental Science and Pollution Research, 30, 1–17. https://doi.org/10.1007/s11356-023-29069-5

    Article  Google Scholar 

  • Rout, L., Bhateja, Y., Garg, A., Mishra, I., Moorthi, S. M. & Dhar, D. (2019). DeepSWIR: A deep learning based approach for the synthesis of short-wave InfraRed Band using multi-sensor concurrent datasets. https://doi.org/10.48550/arXiv.1905.02749

  • Roy, P.S., Roy, A., Joshi, P. K., Kale, M.P., Srivastava, V.K., Srivastava, S.K., Dwevidi, R.S., Joshi, C., Behera, M.D., Meiyappan, P., Sharma, Y., Jain, A.K., Singh, J.S., Palchowdhuri, Y., Ramachandran, R.M., Pinjarla, B., Chakravarthi, V., Babu, N., Gowsalya, M.S., Thiruvengadam, P., Kotteeswaran, M., Priya, V., Yelishetty, K.M.V.N., Maithani, S., Talukdar, G., Mondal, I., Rajan, K.S., Narendra, P.S., Biswal, S., Chakraborty, A., Padalia, H., Chavan, M., Pardeshi, S.N., Chaudhari, S.A., Anand, A., Vyas, A., Reddy, M.K., Ramalingam, M., Manonmani, R., Behera, P., Das, P., Tripathi, P., Matin, S., Khan, M.L., Tripathi, O.P., Deka, J., Kumar, P., & Kushwaha, D. (2016). Decadal land use and land cover classifications across India, 1985, 1995, 2005. Remote sensing, 7(3), 2401–2430. https://doi.org/10.3390/rs70302401.

  • Saxena, A., Jha, M. N., & Rawat, J. K. (2003). Forests as carbon sink – The Indian scenario. Indian Forester, 129(7), 807–814.

    Google Scholar 

  • Singh, B., Verma, A. K., Tiwari, K., & Joshi, R. (2023). Above ground tree biomass modeling using machine learning algorithms in western Terai Sal Forest of Nepal. Heliyon, 9(11), e21485. https://doi.org/10.1016/j.heliyon.2023.e21485

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, H., Qie, G., Wang, G., Tan, Y., Li, J., Peng, Y., Ma, Z., & Luo, C. (2015). Increasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysis. Remote Sensing, 7(11), 15114–15139. https://doi.org/10.3390/rs71115114.

    Article  ADS  Google Scholar 

  • Tiwari, A. K.(1992). Component-wise biomass models for trees. A nonharvest technique. Indian For, 118, 405–410.

  • Toutin, T., & Cheng, P. (2002). QuickBird–a milestone for high resolution mapping. Earth Observation Magazine, 11(4), 14–18.

    Google Scholar 

  • Trumper, K. (2009). The natural fix?: the role of ecosystems in climate mitigation: a UNEP rapid response assessment. UNEP/Earthprint.

  • Wang, G., Guan, D., Zhang, Q., Peart, M. R., Chen, Y., & Peng, Y. (2015). Distribution of dissolved organic carbon and KMnO 4-oxidizable carbon along the low-to-high intertidal gradient in a mangrove forest. Journal of Soils and Sediments, 15, 2199–2209. https://doi.org/10.1007/s11368-015-1150-2.

    Article  CAS  Google Scholar 

  • Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231, 111223. https://doi.org/10.1016/j.rse.2019.111223.

    Article  Google Scholar 

  • Xia, Q., Qin, C. Z., Li, H., Huang, C., & Su, F. Z. (2018). Mapping mangrove forests based on multi-tidal high-resolution satellite imagery. Remote Sensing, 10(9), 1343. https://doi.org/10.3390/rs10091343

    Article  ADS  Google Scholar 

  • Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., & Chave, J. (2009). Global wood density database. Dryad Digital Repository. https://doi.org/10.5061/dryad.235.

  • Zhao, X., Ma, X., Chen, B., Shang, Y., & Song, M. (2022). Challenges toward carbon neutrality in China: Strategies and countermeasures. Resources, Conservation and Recycling, 176, 105959. https://doi.org/10.1016/j.resconrec.2021.105959.

    Article  CAS  Google Scholar 

  • Zhu, B., Feng, T., Gong, D., Jiang, S., Zhao, L., & Cui, N. (2020). Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data. Computers and Electronics in Agriculture, 173, 105430. https://doi.org/10.1016/j.compag.2020.105430

    Article  Google Scholar 

Download references

Acknowledgements

The present paper is outcome of the project funded by Space Application Centre, Indian Space Research Organisation (ISRO). Mangrove Cell, Government of Maharashtra is acknowledged for providing necessary permissions and ground support throughout the project duration.

Funding

The project was carried out from active funding from Space Application Centre, Indian Space Research Organisation (ISRO), Ahmedabad, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Satish N Pardeshi, Manoj Chavan, Manish Kale and Nikhil Lele. Guidance on methodology and interpretation was provided by B.K. Bhattacharya. The first draft of the manuscript was written by Satish N Pardeshi and Manish Kale, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Satish N. Pardeshi.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1934 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardeshi, S.N., Chavan, M., Kale, M. et al. Mangrove Carbon Pool Patterns in Maharashtra, India. J Indian Soc Remote Sens (2024). https://doi.org/10.1007/s12524-024-01823-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12524-024-01823-3

Keywords

Navigation