Skip to main content

Advertisement

Log in

Characteristics of Precipitation Over the Southern Ocean Using Micro Rain Radar and its Comparison with Space-Based Measurements

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Precipitation is the main input for the ice sheet mass balance, which is poorly estimated over the Antarctic region. We carried out measurements of vertical profiles of precipitation over Antarctica (for the first time by an Indian team), by deploying a Micro Rain Radar (MRR) instrument onboard the South African vessel SA Aghulas during the 10th Southern Ocean Expedition of India (2017–18) to understand characteristics of precipitation in this region and compare with satellite retrievals. These expeditions provided unprecedented observations of vertical profiles of precipitation over the Southern Ocean region from 20°S to 66°S. The precipitation rate (R) measurements indicate that the majority of the precipitation events fall under the ranges of 0 < R < 5 mm/hr (about 32 events) and 5 < R < 90 mm/hr (about 44 events). We observed the presence of virga in vertical profiles of precipitation, which is very important from a climatology point of view. The vertical profiles of precipitation parameters indicate the presence of signatures of melting layers in the height range of 3.5–4.5 km above the mean sea level (msl) in the tropical region and 1.0 to 3.0 km msl in the polar region, as opposed to the fixed value of 4.86 km used. The comparison between surface MRR measurements 0–200 m and satellite precipitation rate illustrate that both datasets agree within 0.39 mm/hr with RMSE of 1.69 mm/hr and correlation of 0.86 for nearest satellite pixels surface, whereas comparison for MRR average of 0–600 m and satellite rain rate show that the datasets agree within 0.06 mm with RMSE of 1.55 mm/hr and correlation of 0.91.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Behrangi, A., Hsu, K. L., Imam, B., Sorooshian, S., & Kuligowski, R. J. (2009). Evaluating the utility of multispectral information in delineating the areal extent of precipitation. Journal of Hydrometeorology, 10(3), 684–700. https://doi.org/10.1175/2009JHM1077.1

    Article  Google Scholar 

  • Bromwich, D. H. (1996). Snowfall in high Southern Latitudes. Reviews of Geophysics, 26(1), 149–168.

    Article  Google Scholar 

  • Frieler, K., Clark, P. U., He, F., Buizert, C., Reese, R., Ligtenberg, S. R. M., Van Den Broeke, M. R., Winkelmann, R., & Levermann, A. (2015). Consistent evidence of increasing Antarctic accumulation with warming. Nature Climate Change, 5(4), 348–352. https://doi.org/10.1038/NCLIMATE2574

    Article  Google Scholar 

  • Hilburn, K. A., & Wentz, F. J. (2008). Intercalibrated passive microwave rain products from the unified microwave Ocean retrieval algorithm (UMORA). Journal of Applied Meteorology and Climatology, 47(3), 778–794. https://doi.org/10.1175/2007JAMC1635.1

    Article  Google Scholar 

  • International telecommunication union recommendation 839–4, rain height model for the prediction methods (ITUR, Geneva, Switzerland). (2013).

  • King, J. C., & Turner, J. (2007). Antarctic meteorology and climatology. Cambridge University Press.

    Google Scholar 

  • Kneifel, S., Maahn, M., Peters, G., & Simmer, C. (2011). Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar ). Meteorology and Atmospheric Physics, 113, 75–87. https://doi.org/10.1007/s00703-011-0142-z

    Article  Google Scholar 

  • Kummerow, C., Oison, W. S., & Giglio, L. (1996). A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Transactions on Geoscience and Remote Sensing, 34(5), 1213–1232. https://doi.org/10.1109/36.536538

    Article  Google Scholar 

  • Kunhikrishnan, P. K., Sivaraman, B. R., Kumar, N. V. P. K., & Alappattu, D. P. (2006). Rain observations with micro rain radar (MRR) over Thumba. Remote Sensing of the Atmosphere and Clouds, 6408, 118–126. https://doi.org/10.1117/12.694115

    Article  Google Scholar 

  • Maahn, M., Burgard, C., Crewell, S., Gorodetskaya, I. V., Kneifel, S., Lhermitte, S., Tricht, K. Van., & Van Lipzig, N. P. M. (2014). How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? Journal of Geophysical Research: Atmospheres. https://doi.org/10.1002/2014JD022079

    Article  Google Scholar 

  • Mitchell, D. L., & Heymsfield, A. J. (2005). Refinements in the treatment of ice particle terminal velocities. Highlighting Aggregates, 62, 1637–1644.

    Google Scholar 

  • Oshima, K., & Yamazaki, K. (2004). Seasonal variation of moisture transport in polar regions and the relation with annular modes. Polar Meteorology and Glaciology, 18, 30–53.

    Google Scholar 

  • Peters, G., Fischer, B., & Andersson, T. (2002). Rain observations with a vertically looking Micro Rain Radar (MRR). Borel Environment Research, 7, 353–362.

    Google Scholar 

  • Peters, G., Fischer, B., Hans, M., Clemens, M., & Wagner, A. (2005). Profiles of raindrop size distributions as retrieved by microrain radars. Journal of Applied Meteorology, 44(1973), 1930–1949.

    Article  Google Scholar 

  • Pfitzenmaier, L., Unal, C. M. H., Dufournet, Y., Russchenberg, H. W. J., & Sensing, R. (2018). Observing ice particle growth along fall streaks in mixed-phase clouds using spectral polarimetric radar data. Atmospheric Chemistry and Physics, 2016, 7843–7862.

    Article  Google Scholar 

  • Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., Van Den Broeke, M. R., & Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484(7395), 502–505. https://doi.org/10.1038/nature10968

    Article  Google Scholar 

  • Rao, T. N., Kirankumar, N. V. P., Radhakrishna, B., Rao, D. N., & Nakamura, K. (2008). Classification of tropical precipitating systems using wind profiler spectral moments. Part II: Statistical characteristics of rainfall systems and sensitivity analysis. Journal of the Seismological Society of Japan, 25, 898–908. https://doi.org/10.1175/2007JTECHA1032.1

    Article  Google Scholar 

  • Shepherd, A., Ivins, Erik R., Aa, G., Barletta, V. R., Bentley, M. J., Bettadpur, S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg, S. R. M., Luckman, A., Luthcke, S. B., … Zwally, H. J. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338, 1183–1189. https://doi.org/10.1126/science.1228102

    Article  Google Scholar 

  • Siems, S. T., Huang, Y., & Manton, M. J. (2022). Southern Ocean precipitation: Toward a process-level understanding. WIREs Climate Change, 13(6), e800. https://doi.org/10.1002/wcc.800

    Article  Google Scholar 

  • Wentz, F. J., & Spencer, R. W. (1998). SSM/I rain retrievals within a unified all-weather ocean algorithm. Journal of the Atmospheric Sciences, 55(9), 1613–1627. https://doi.org/10.1175/1520-0469(1998)055%3c1613:SIRRWA%3e2.0.CO;2

    Article  Google Scholar 

  • Westbrook, C. D. (2008). The fall speeds of sub-100 µm ice crystals. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 134, 1243–1251. https://doi.org/10.1002/qj.290

    Article  Google Scholar 

  • Zhao, L., & Weng, F. (2002). Retrieval of ice cloud parameters using the advanced microwave sounding unit. Journal of Applied Meteorology, 41(4), 384–395. https://doi.org/10.1175/1520-0450(2002)041%3c0384:ROICPU%3e2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Director NRSC and Deputy Director, Earth and Climate Sciences Area (ECSA), NRSC. We also thank NCPOR team members for their unconditional support. We would like to acknowledge the crew of expeditions for their support of the field campaign. We thank NRSC and NCPOR administration for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rounaq Goenka.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goenka, R., Anoop, S. & Ramana, M.V. Characteristics of Precipitation Over the Southern Ocean Using Micro Rain Radar and its Comparison with Space-Based Measurements. J Indian Soc Remote Sens 51, 1619–1630 (2023). https://doi.org/10.1007/s12524-023-01727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01727-8

Keywords

Navigation