Skip to main content

Advertisement

Log in

Prospecting and Mapping Iron Ore within the Niger–Benue Confluence Using Landsat 8

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

A Correction to this article was published on 20 September 2023

This article has been updated

Abstract

This study used Landsat 8 (OLI/TIRS) to map iron ore deposits around the Niger–Benue River Confluence in Nigeria. Radiometric calibration was used to improve the quality of the remotely sensed image. Band ratioing and principal component analysis (PCA) were used to identify the iron ore mineral deposits. While a geological map was used to validate remote sensing techniques, a geomorphological map was used to analyze the occurrence of iron ore spread over the landscape. The band ratio 4/2 result revealed that ferric iron oxides cover 35.03% of the study area specifically within Agbaja, Idibo, and Ayede communities. Band ratio 5/6 showed that ferrous iron oxides cover 31.56% of the study area, notably in Koroko and Kakun. Ratio 6/7 revealed that hydroxyls cover 14.53% of the study area specifically within Itakpe Hills. PC bands 2,4,5, and 6 show that 42.77% of the study is covered by iron oxide, while bands 2,5,6 and 7 reveal 48.58% area coverage by hydroxyl. Spectral reflectance signatures indicated that illinite, goethite, hematite, pyrite, and limonite as dominant iron ores. The relationship of the final alteration map superimposed over geological and geomorphological maps corresponds with existing mineralogical literature. While the study approach can be replicated, the study further recommends that iron ore prospecting activities should concentrate on the undulating plains, ridges, hills, and outcrops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  • Abdelaziz, R., El-Rahman, Y. A., & Wilhelm, S. (2018). Landsat-8 data for chromite prospecting in the Logar Massif, Afghanistan. Heliyon, 4(2), 542.

    Article  Google Scholar 

  • Abdelkareem, M., Kamal, E. G., & Osman, I. (2018). An integrated approach for mapping mineral resources in the Eastern Desert of Egypt. International Journal of Applied Earth Observation and Geoinformation, 73C, 682–696.

    Article  Google Scholar 

  • Abdelouhed, F., Algouti, A., Mlouk, M., & Mohammed. (2021). Lithological mapping using Landsat 8 Oli multispectral data in Boumalne, Imider, and Sidi Ali Oubork High central atlas Morocco. E3S Web of Conferences, 234(00017), 1–6.

    Google Scholar 

  • Abuelgasim, A., & Ammad, R. (2019). Mapping soil salinity in arid and semi-arid regions using Landsat 8 OLI satellite data. Journal of Remote Sensing Applications: Society and Environment, 13, 415–425. https://doi.org/10.1016/j.rsase.2018.12.010

    Article  Google Scholar 

  • Adongma, W. T., Gajere, J. N., Amuda, A. K., Edmond, R. R. D., Faisal, M., & Yusuf, Y. D. (2021). Mapping of hydrothermal alterations related to gold mineralization within parts of the malumfashi schist belt, north-western Nigeria. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 401–417. https://doi.org/10.1016/j.ejrs.2020.11.001

    Article  Google Scholar 

  • Akpah FA (2008) Hydrogeochemistry and impact of iron ore mining on groundwater quality in Itakpe and its environs, Kogi State, Central Nigeria. In Unpublished MSc Thesis: The University of Nigeria, Nsuka.

  • Akubo, S. A., & Omejeh, E. T. (2019). Assessment of mineral wealth of Kogi state and its impact on socioeconomic development. EPRA International Journal of Research & Development (IJRD), 4(8), 10–19.

    Google Scholar 

  • Alanazi, H. A., & Ghrefat, H. A. (2013). Spectral analysis of multispectral Landsat 7 and ASTER data for mapping land cover at Qurayah Sabkha, Northern Saudi Arabia. Journal of the Indian Society of Remote Sensing, 41(4), 833–844.

    Article  Google Scholar 

  • Amigun, J. O., Faruwa, R. A., & Komolafe, A. A. (2015). Integrated Landsat imagery and geophysical exploration for groundwater potential evaluation of Okene and its environs, south-western Nigeria. International Journal of Geosciences, 6, 209–229.

    Article  Google Scholar 

  • Amin K (2015) Application of remote sensing and GIS in geological mapping and mineral exploration: Case study of El-Beida area, eastern desert of Egypt. In Mineral Exploration Sector, Egyptian Mineral Resource and Geological Survey Authority (pp. 1–18). Cairo.

  • Amin P, Hashim M, Park Y (2017) Alteration mineral mapping in inaccessible regions using target detection algorithms to ASTER data. In Journal of Physics, Conference Series, IOP Publishing.

  • Areola O (2004) Kogi State Physical Setting, People, Population and Rural-Urban Settlement. Retrieved from www.onlinenigeria.com/links/kogiadv.asp?blurb=306

  • Atoyebi, T. R. (2013). Frequency analysis of maximum daily rainfall for selected towns in north-central Nigeria. Hydrology and Water Resource, 9(3), 45.

    Google Scholar 

  • Bersi, M., Saibi, H., & Chabou, M. C. (2016). Aero-gravity and remote sensing observations of an iron deposit in Gara Djebilet, South-western Algeria. Journal of African Earth Sciences, 116, 134–150.

    Article  Google Scholar 

  • Cardoso-Fernandes, J., Teodoro, A. C., Lima, A., Perrotta, M., & Roda-Robles, E. (2020). Detecting lithium (Li) mineralizations from space: Current research and future perspectives. Applied Sciences, 10, 1785.

    Article  Google Scholar 

  • Crosta AP, Moore J (1989) Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minais Gerais State, Brazil: A prospecting case history in greenstone belt terrain. In Proceedings of the 7th (ERIM) Thematic Conference: Remote Sensing for Geology (pp.1173–1187). Calgary.

  • Ducart, D. F., Silva, A. M., Catarina, B. M., & Luciano, A. S. (2016). Mapping iron oxides with Landsat-8/OLI and EO-1/Hyperion imagery from the Serra Norte iron deposits in the Carajás mineral province, Brazil. Brazilian Journal of Geology, 46(3), 331–349.

    Article  Google Scholar 

  • Elsayed, Z. K. A., El-Nadi, A. H. H., & Babiker, I. S. (2020). Prospecting for gold mineralization with the use of remote sensing and GIS technology in North Kordofan State, Central Sudan. Scientific African, 10, e00627. https://doi.org/10.1016/j.sciaf.2020.e00627

    Article  Google Scholar 

  • El Zalaky, M. A., Essam, M. E., & El Arefy, R. A. (2018). Assessment of band ratios and feature oriented principal component selection (FPCS) techniques for iron oxides mapping with relation to radioactivity using landsat 8 at Bahariya Oasis. Egypt Researcher, 10(4), 1–10.

    Google Scholar 

  • Ezabti A, Jovanović V (2015) GIS and remote sensing application in geological mapping and 3-d terrain modelling: a case study in Eghei uplift, Libya: Synthesis. In International Scientific Conference of Information Technology and Business-Related Research (pp. 615–619).

  • Fang-fang, L. I. (2012). Design and research of mineral resource verification system based on 3s technology. Procedia of Environmental Sciences, 12, 1030–1033.

    Article  Google Scholar 

  • Fatoye, F. B. (2018). Geology and mineral resources of Kogi state Nigeria. International Journal of Multidisciplinary Sciences and Engineering, 9(7), 7–13.

    Google Scholar 

  • Githenya, L., Kariuki, P., & Waswa, A. K. (2019). Application of remote sensing in mapping hydrothermal alteration zones and geological structures as areas of economic mineralization in Mwitika-Makongo Area, SE Kenya. Journal of Environmental and Earth Science, 9(11), 16–27.

    Google Scholar 

  • Hassan, S. M., & Sadek, M. F. (2017). Geological mapping and spectral-based classification of basement rocks using remote sensing data analysis: The Korbiai-Gerfnappe complex, south eastern desert Egypt. Journal of African Earth Sciences, 13(4), 404–418.

    Article  Google Scholar 

  • Khalid, A., & Abdel, H. (2014). The use of Landsat 8 OLI image for the delineation of gossanic ridges in the red sea hills of NE Sudan. American Journal of Earth Science, 1(3), 62–67.

    Google Scholar 

  • Loughlin, W. P. (1991). Principal component analysis for alteration mapping. Photogrammetric Engineering and Remote Sensing, 57(9), 1163–1169.

    Google Scholar 

  • Madani, A., & Niyazi, B. (2015). Groundwater potential mapping using remote sensing techniques and weights of evidence GIS model: A case study from Wadi Yalamlam Basin, Makkah province Western Saudi Arabia. Environmental Earth Sciences, 74(6), 1–14.

    Article  Google Scholar 

  • Mia, M. B., & Fujimitsu, Y. (2012). Mapping hydrothermal altered mineral deposits using Landsat 7 ETM+ image in and around Kuju volcano, Kyushu Japan. Journal of Earth System Science, 121(4), 1049–1057.

    Article  Google Scholar 

  • Modabberi, S., Ahmadi, A., & Tangestani, M. H. (2017). Sub-pixel mapping of alunite and jarosite using ASTER data: A case study from north of Semnan, north central Iran. Ore Geology Reviews, 80, 429–436.

    Article  Google Scholar 

  • Mohammed, T. A. M., Al-Naimi, L. S., Mgbeojedo, T. I., & Agoha, C. C. (2021). Geological mapping and mineral prospectivity using remote sensing and GIS in parts of Hamissana, northeast Sudan. Journal of Petroleum Exploration and Production, 11, 1123–1138.

    Article  Google Scholar 

  • Mücke, A., Badejoko, T. A., & Akande, S. O. (1999). Petrographic-microchemical studies and origin of the Agbaja phanerozoic ironstone formation, Nupe Basin, Nigeria: A product of a ferruginized ooidal kaolin precursor not identical to the minette type. Mineralium Deposita, 34, 284–296.

    Article  Google Scholar 

  • Noda, S., & Yamaguchi, Y. (2017). Estimation of surface iron oxide abundance with suppression of grain size and topography effects. Ore Geology Reviews, 83, 312–320.

    Article  Google Scholar 

  • Ocholi, I. U., Idoko, O., & Ogidiolu, A. (2007). Human-induced change characteristics of selected vegetation variables in parts of Kogi east, Nigeria. International Journal of Science and Research (IJSR), 6(9), 1895–1902.

    Google Scholar 

  • Odunuga, S., & Raji, S. A. (2018). Geomorphological mapping of part of the Niger Delta, Nigeria using DEM and multispectral imagery. Journal of Natural Science, Engineering and Technology, 17(1&2), 121–146.

    Google Scholar 

  • Okpoli, C. C., Ogbole, J. O., Oyeshomo, A. V., & Gbadebo, O. O. (2022). Mineral exploration of Iwo-Apomu southwestern Nigeria using aeromagnetic and remote sensing. The Egyptian Journal of Remote Sensing and Space Science, 25(2), 371–385. https://doi.org/10.1016/j.ejrs.2022.03.004

    Article  Google Scholar 

  • Olade, M. A. (2019). Re-evaluation of Nigeria’s iron ore deposits as raw materials for a viable iron and steel industry. Achievers Journal Scientific Research, 2(1), 1–22.

    Google Scholar 

  • Omali, T. U. (2021). Utilization of remote sensing and GIS in geology and mining. International Journal of Scientific Research in Multidisciplinary Studies, 7(4), 7–24.

    Google Scholar 

  • Omer, E. A., & Elsayed, Z. K. (2018). Digital image processing of Landsat 8 and spectral analysis of ASTER data for mapping alteration minerals, southern Hamisana NE Sudan. Al Neelain J Geosci, 2(1), 10–20.

    Google Scholar 

  • Opeloye, S. A., Amigun, J. O., Sanusi, S. O., & Alabi, O. (2021). Palaeoenvironmental reconstruction and oolitic ironstone mapping of the Agbaja Ironstone Formation in the Nupe Basin, North-central Nigeria: Insights from sedimentological and aeromagnetic analyses. Results in Geophysical Sciences, 5, 100010. https://doi.org/10.1016/j.ringps.2021.100010

    Article  Google Scholar 

  • Pour, A. B., & Hashim, M. (2015). Identification of hydrothermal alteration minerals for exploring porphyry copper deposit using ASTER data, SE Iran. Journal of Asian Earth Sciences, 42(6), 1309–1323.

    Article  Google Scholar 

  • Sadiya, T. B., Ibrahim, O., Asma, T. F., Mamfe, V., Nsofor, C. J., Oyewmi, A. S., Shar, J. T., Sanusi, M., & Ozigis, M. S. (2014). Mineral detection and mapping using band ratioing and crosta technique in Bwari Area Council, Abuja Nigeria. International Journal of Scientific & Engineering Research, 5(12), 1100–1108.

    Google Scholar 

  • Safari, M., & Maghsoudi, A. (2017). Application of Landsat-8 and ASTER satellite remote sensing data for Porphyry copper exploration: A case study from Shahr-e-Babak, Kerman, south of Iran. Geocarto International, 33, 1–42.

    Google Scholar 

  • Salawu, N. B., Dada, S. S., Orosun, M. M., Adebiyi, L. S., & Fawale, O. (2021). Influence of Pan-African tectonics on older Precambrian basement structural fabrics as revealed from the interpretation of aeromagnetic and remote sensing data of Ikole/Kabba region, southwestern Nigeria. Journal of African Earth Sciences, 179, 104189. https://doi.org/10.1016/j.jafrearsci.2021.104189

    Article  Google Scholar 

  • Salem, S. M., El Sharkawi, M., El-Alfy, Z., Soliman, N. M., & Ahmed, S. E. (2016). Exploration of gold occurrences in alteration zones at Dungash district, southeastern desert of Egypt using ASTER data and geochemical analyses. Journal of African Earth Sciences, 117, 389–400.

    Article  Google Scholar 

  • Sheikhrahimi, A., Beiranvand Pour, A., Pradhan, B., & Zoheir, B. (2019). Mapping hydrothermal alteration zones and lineaments associated with orogenic gold mineralization using ASTER remote sensing data: A case study of Sanandaj-Sirjan Zone, Iran. Advances in Space Research. https://doi.org/10.1016/j.asr.2019.01.035

    Article  Google Scholar 

  • Tangestani, M. H., & Moore, F. (2001). Comparison of three principal component analysis techniques to porphyry copper alteration mapping: A case study, Meiduk Area, Kerman Iran. Canadian Journal of Remote Sensing, 27, 176–182.

    Article  Google Scholar 

  • Testa, F. J., Villanueva, C., & Cooke, D. R. (2018). Lithological and hydrothermal alteration mapping of epithermal, porphyry and tourmaline breccia districts in the Argentine Andes using ASTER Imagery. Remote Sensing, 10, 203.

    Article  Google Scholar 

  • United States Geological Survey (USGS) (1989) Suggestions for prospecting; general information product (pp. 1–50). U.S Government Printing Office.

  • Xianshi, S., Nassir, A., Mohamed, A., & Fathy, A. (2020). Application of remote sensing and GIS techniques for exploring potential areas of hydrothermal mineralization in the Central Eastern Desert of Egypt. Journal of Taibah University for Science, 14(1), 1421–1432.

    Article  Google Scholar 

  • Zeinelabdein, K. A. E., El-Nadi, A. H. H., & Babiker, I. S. (2020). Prospecting for gold mineralization with the use of remote sensing and GIS technology in North Kordofan State, central Sudan. Scientific African, 10, 627.

    Google Scholar 

  • Zoheir, B., & Emam, A. (2012). Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the south-eastern desert Egypt. Journal of African Earth Sciences, 66–67, 23–34.

    Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the reviewers and editors for their meticulous efforts in enhancing the quality of this manuscript. Their valuable feedback and insightful suggestions have greatly contributed to the refinement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saheed A. Raji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odunuga, S., OshoBadru, O.E.G.S. & Raji, S.A. Prospecting and Mapping Iron Ore within the Niger–Benue Confluence Using Landsat 8. J Indian Soc Remote Sens 51, 1523–1539 (2023). https://doi.org/10.1007/s12524-023-01717-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01717-w

Keywords

Navigation