Skip to main content

Advertisement

Log in

Altitudinal Shifting of Apple Orchards with Adaption of Changing Climate in the Alpine Himalaya

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The impact of climate change is found to be the most significant for agricultural practices in the alpine regions of the world. Apple orchards of Kalpa, Indian Himalaya, are facing the same dilemma. The main objective of this work is to analyze the effect of climate variability on the location of apple orchards through the computation of spatio-temporal dynamics of snow cover area, vegetation cover area and land surface temperature using earth observation based multispectral data analysis. Using the above variables, we have delineated suitable zones for apple cultivation using the analytical hierarchy process method. The IMD data have been used for descriptive statistics, Mann–Kendall (MK) test and Sen’s slope estimation to detect temporal trends in local climatic conditions since 1987. The result indicates a significant rise in annual and seasonal temperatures, especially during the winter and spring seasons, along with declining precipitation, which has been assessed with the help of farmers’ opinions. Shifting of the apple orchards along with vegetation covers from lower to higher altitudes, in the study area, squeezed the suitable zone in the limited pockets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott, D. L. (1984). The apple tree: Physiology and management. The Apple Tree: Physiology and Management. https://www.cabdirect.org/cabdirect/abstract/19860335650

  • Avdan, U., & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. Journal of Sensors. https://doi.org/10.1155/2016/1480307

    Article  Google Scholar 

  • Awasthi, R. P., Verma, H. S., Sharma, R. D., Bhardwaj, S. P., & Bhardwaj, S. V. (2001). Causes of low productivity in apple orchards and suggested remedial measures. Productivity of Temperate Fruits. Solan: Dr. YS Parmar University of Horticulture and Forestry, 18.

  • Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L., & Radocinski, R. G. (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 6(11), 11607–11626.

    Article  Google Scholar 

  • Basannagari, B., & Kala, C. P. (2013). Climate change and apple farming in Indian Himalayas: A study of local perceptions and responses. PLoS ONE, 8(10), e77976.

    Article  Google Scholar 

  • Bhutiyani, M. R., Kale, V. S., & Pawar, N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85(1–2), 159–177. https://doi.org/10.1007/s10584-006-9196-1

    Article  Google Scholar 

  • Byrne, D. H., & Bacon, T. A. (1992). Chilling estimation: Its importance and estimation. The Texas Horticulturist, 18(8), 5–8.

    Google Scholar 

  • Cengiz, T., & Akbulak, C. (2009). Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: A case study of Dümrek village (Çanakkale, Turkey). International Journal of Sustainable Development & World Ecology, 16(4), 286–294. https://doi.org/10.1080/13504500903106634

  • Chakraborty, S., & Banik, D. (2006). Design of a material handling equipment selection model using analytic hierarchy process. The International Journal of Advanced Manufacturing Technology, 28(11), 1237–1245. https://doi.org/10.1007/s00170-004-2467-y

  • Chen, Y., Khan, S., & Paydar, Z. (2010). To retire or expand? A fuzzy GIS-based spatial multi-criteria evaluation framework for irrigated agriculture. Irrigation and Drainage, 59(2), 174–188. https://doi.org/10.1002/ird.470

  • Cohen, J. (1994). Snow cover and climate. Weather, 49(5), 150–156.

    Article  Google Scholar 

  • Cohen, J., & Entekhabi, D. (2001). The influence of snow cover on Northern Hemisphere climate variability. Atmosphere-Ocean, 39(1), 35–53.

    Article  Google Scholar 

  • Development of horticulture (2014) Facts and figures, Department of Horticulture, Govt. Of Himachal Pradesh, Shimla: pp. 7–20 (2014).

  • Dimri, A. P., Kumar, A., Satyawali, P. K., & Ganju, A. (2008). Climatic variability of weather parameters over the western Himalayas: A case study. In Proceedings of the National Snow Science Workshop (pp. 11–12). Chandigarh, Snow and Avalanche Study Establishment: Chandigarh, India.

  • Douville, H., & Royer, J. F. (1996). Sensitivity of the Asian summer monsoon to an anomalous Eurasian snow cover within the Meteo-France GCM. Climate Dynamics, 12(7), 449–466.

    Article  Google Scholar 

  • Fan, Y., & van den Dool, H. (2008). A global monthly land surface air temperature analysis for 1948–present. Journal of Geophysical Research: Atmospheres, 113(D1). https://doi.org/10.1029/2007JD008470

  • Foster, J., Liston, G., Koster, R., Essery, R., Behr, H., Dumenil, L., Verseghy, D., Thompson, S., Pollard, D., & Cohen, J. (1996). Snow cover and snow mass intercomparisons of general circulation models and remotely sensed datasets. Journal of Climate, 9(2), 409–426.

    Article  Google Scholar 

  • Gautam, D. R., Sharma, G., & Jindal, K. K. (2003, October). Fruit setting problems of apples under changing climatic scenario of North-Western Himalayas of India. In VII International Symposium on Temperate Zone Fruits in the Tropics and Subtropics 662 (pp. 435-441). https://doi.org/10.17660/ActaHortic.2004.662.66

  • Gayen, A. & Haque, S.M. (2022) Soil erodibility assessment of laterite dominant sub-basin watersheds in the humid tropical region of India, Catena, 106161, Vol. 213, https://doi.org/10.1016/j.catena.2022.106161

  • Gayen, A., Haque, S. M., & Saha, S., et al. (2020). Modeling of gully erosion based on random forest using GIS and R. In P. Sheet (Ed.), Gully Erosion studies from India and surrounding regions (pp. 35–44). Springer.

    Chapter  Google Scholar 

  • Gehrig-Fasel, J., Guisan, A., & Zimmermann, N. E. (2007). Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of Vegetation Science, 18(4), 571–582. https://doi.org/10.1111/j.1654-1103.2007.tb02571.x

    Article  Google Scholar 

  • Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Alonso, J. L. B., Grabherr, G., et al. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111–115. https://doi.org/10.1038/nclimate1329

    Article  Google Scholar 

  • Guédon, Y., & Legave, J. M. (2008). Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecological Modelling, 219(1–2), 189–199.

    Article  Google Scholar 

  • Hall, D. K., Foster, J. L., Verbyla, D. L., Klein, A. G., & Benson, C. S. (1998). Assessment of snow-cover mapping accuracy in a variety of vegetation-cover densities in Central Alaska. Remote Sensing of Environment, 66(2), 129–137. https://doi.org/10.1016/S0034-4257(98)00051-0

    Article  Google Scholar 

  • Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., & Bayr, K. J. (2002). MODIS snow-cover products. Remote Sensing of Environment, 83(1–2), 181–194. https://doi.org/10.1016/S0034-4257(02)00095-0

    Article  Google Scholar 

  • Haque, S.M., Kannaujiya, S., Taloor, A.K., Keshri, D., Bhunia, R.K., Champati Rai, P.K. and & Chauhan, P. (2020). Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques, Groundwater for sustainable development, Elsevier, 10(2020)100337, pp.1–14

  • Holzman, M. E., Rivas, R., & Piccolo, M. C. (2014). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28, 181–192. https://doi.org/10.1016/j.jag.2013.12.006

    Article  Google Scholar 

  • Horticulture Statistics Division. (2015). Horticulture statistics at a glance 2015, Ministry of Agriculture, Cooperation and Farmers Welfare. Oxford University Press.

    Google Scholar 

  • Jangra, M. S., & Sharma, I. M. (2010). Climate Change and Temperate Horticulture over Himachal Pradesh. Climate Change and Agriculture over India, 282–295.

  • Jindal, K. K., Chauhan, P. S., & Mankotia, M. S. (2001). Apple productivity in relations to environmental components. Productivity of Temperate Fruits. Edited By KK Jindal and DR Gautam, 12–20.

  • Jones, P. D., New, M., Parker, D. E., Martin, S., & Rigor, I. G. (1999). Surface air temperature and its changes over the past 150 years. Reviews of Geophysics, 37(2), 173–199. https://doi.org/10.1029/1999RG900002

    Article  Google Scholar 

  • Kendall, M. G. (1975). Rank correlation methods (pp 202): Charles Griffin book series. London: Oxford University Press.

    Google Scholar 

  • Kothawale, D. R., & Kumar, K. R. (2005). On the recent changes in surface temperature trends over India. Geophysical Research Letters. https://doi.org/10.1029/2005GL023528

    Article  Google Scholar 

  • Kripalani, R. H., Kulkarni, A., & Sabade, S. S. (2003). Western Himalayan snow cover and Indian monsoon rainfall: A re-examination with INSAT and NCEP/NCAR data. Theoretical and Applied Climatology, 74(1), 1–18. https://doi.org/10.1007/s00704-002-0699-z

    Article  Google Scholar 

  • Kumar, P., Husain, A., Singh, R. B., & Kumar, M. (2018). Impact of land cover change on land surface temperature: A case study of Spiti Valley. Journal of Mountain Science, 15(8), 1658–1670.

    Article  Google Scholar 

  • Laternser, M., & Schneebeli, M. (2003). Long-term snow climate trends of the Swiss Alps (1931–99). International Journal of Climatology: A Journal of the Royal Meteorological Society, 23(7), 733–750.

    Article  Google Scholar 

  • Lemke, P., Ren, J. F., Alley, R. B., Allison, I., Carrasco, J., Flato, G., Fujii, Y., Kaser, G., Mote, P., Thomas, R. H., & Zhang, T. (2007). Observations: Changes in Snow, Ice and Frozen Ground. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Science Basis.

  • Li, Z. L., Tang, B. H., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, I. F., & Sobrino, J. A. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37. https://doi.org/10.1016/j.rse.2012.12.008

    Article  Google Scholar 

  • Liang, E., Dawadi, B., Pederson, N., & Eckstein, D. (2014). Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology, 95(9), 2453–2465. https://doi.org/10.1890/13-1904.1

    Article  Google Scholar 

  • Liang, E., Leuschner, C., Dulamsuren, C., Wagner, B., & Hauck, M. (2016). Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Climatic Change, 134(1–2), 163–176.

    Article  Google Scholar 

  • López-Moreno, J. I. (2005). Recent variations of snowpack depth in the central spanish pyrenees. Arctic, Antarctic, and Alpine Research, 37(2), 253–260.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823-870.

  • Lynch, M., & Lande, R. (1993). Evolution and extinction in response to environmental chang. In P. M. Kareiva & J. Kingsolver (Eds.), Biotic Interactions and global change (pp. 234–250). Sinauer Associates Inc.

    Google Scholar 

  • Madrigal-Martínez, S., & Puga-Calderón, R. J. (2018). Land suitability and sensitivity analysis for planning apple growing in Mala’s Valley, Peru. Bioagro, 30(2), 95–106. https://revistas.uclave.org/index.php/bioagro/article/view/358

  • Malczewski, J. (1999). GIS and Multicriteria Decision Analysis. John Wiley & Sons.

  • Malczewski, J. (2006). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703–726. https://doi.org/10.1080/13658810600661508

  • Manandhar, S., Pandey, V. P., & Kazama, F. (2014). Assessing suitability of apple cultivation under climate change in mountainous regions of western Nepal. Regional Environmental Change, 14(2), 743–756.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Mannstein, H. (1987). Surface energy budget, surface temperature and thermal inertia. In R. A. Vaughan (Ed.), Remote sensing applications in meteorology and climatology (pp. 391–410). Springer. https://doi.org/10.1007/978-94-009-3881-6_21

    Chapter  Google Scholar 

  • Markham, B. L., & Barker, J. L. (1985). Spectral characterization of the Landsat Thematic Mapper sensors. International Journal of Remote Sensing, 6(5), 697–716.

    Article  Google Scholar 

  • Mishra, S.V., Gayen, A., Haque, S.M. (2020) COVID-19 and urban vulnerability in the mega-cities of the global south. https://doi.org/10.31235/osf.io/523r8, Habitat International, Elsevier, Vol. 103.

  • Mishra, B., Babel, M. S., & Tripathi, N. K. (2014). Analysis of climatic variability and snow cover in the Kaligandaki River Basin, Himalaya. Nepal. Theoretical and Applied Climatology, 116(3–4), 681–694. https://doi.org/10.1007/s00704-013-0966-1

    Article  Google Scholar 

  • Mote, P. W., Hamlet, A. F., Clark, M. P., & Lettenmaier, D. P. (2005). Declining mountain snowpack in western North America. Bulletin of the American Meteorological Society, 86(1), 39–50.

    Article  Google Scholar 

  • National Horticulture Board. Apple. (2012). Available from: http://nhb.gov.in/report_files/apple/APPLE.htm

  • Negi, H. S., Saravana, G., Rout, R., & Snehmani. (2013). Monitoring of great Himalayan glaciers in Patsio region, India using remote sensing and climatic observations. Current Science, 105(10), 1383–1392.

    Google Scholar 

  • Nolin, A. W., & Liang, S. (2000). Progress in bidirectional reflectance modeling and applications for surface particulate media: Snow and soils. Remote Sensing Reviews, 18(2–4), 307–342. https://doi.org/10.1080/02757250009532394

    Article  Google Scholar 

  • Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., & van Ypserle, J. P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change.

  • Pandya, U., Patel, A., & Patel, D. (2017). River Cross Section Delineation From The Google Earth For Development Of 1D HECRAS Model–A Case Of Sabarmati River, Gujarat, India. In International Conference on Hydraulics, Water Resources & Coastal Engineering, Ahmedabad, India.

  • Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and urban planning, 99(2), 104-114.

  • Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (Eds.). (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press.

  • Pramanik, M. K. (2016). Site suitability analysis for agricultural land use of Darjeeling district using AHP and GIS techniques. Modeling Earth Systems and Environment, 2(2), 56. https://doi.org/10.1007/s40808-016-0116-8

  • Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37–42. https://doi.org/10.1038/nature01286

    Article  Google Scholar 

  • Partap, U., & Partap, T. (2002). Warning signals from the apple valleys of the Hindu Kush-Himalayas: Productivity concerns and pollination problems. ICIMOD. https://www.cabdirect.org/cabdirect/abstract/20036796309

  • Rai, R., Joshi, S., Roy, S., Singh, O., Samir, M., & Ch, A. (2015). Implications of changing climate on productivity of temperate fruit crops with special reference to apple. Journal of Horticulture, 2, 135.

    Google Scholar 

  • Rana, A., Rana, R., Chauhan, R., & Sen, V. (2013). Farmers’ perception in relation to climate variability in apple growing regions of Kullu District of Himachal Pradesh. Journal of Agricultural Physics, 13(1), 48–54.

    Google Scholar 

  • Rana, P. R. S., Bhagat, R. M., & Kalia, V. (2012). The impact of climate change on a shift of the apple belt in Himachal Pradesh. Handbook of Climate Change and India (pp. 75–86). Routledge.

    Google Scholar 

  • Roig-Tierno, N., Baviera-Puig, A., Buitrago-Vera, J., & Mas-Verdu, F. (2013). The retail site location decision process using GIS and the analytical hierarchy process. Applied Geography, 40, 191–198. https://doi.org/10.1016/j.apgeog.2013.03.005

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234-281.

  • Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

  • Saaty, T. L. (2001). Decision making for leaders: the analytic hierarchy process for decisions in a complex world. RWS publications.

  • Sahu, N., Saini, A., Behera, S. K., Sayama, T., Sahu, L., Nguyen, V.-T.-V., & Takara, K. (2020). Why apple orchards are shifting to the higher altitudes of the Himalayas? PLoS ONE. https://doi.org/10.1371/journal.pone.0235041

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Sen, V., Rana, R. S., & Chauhan, R. C. (2015). Impact of climate variability on apple production and diversity in Kullu valley. Himachal Pradesh. Indian Journal of Horticulture, 72(1), 14–20. https://doi.org/10.5958/0974-0112.2015.00003.1

    Article  Google Scholar 

  • Shekhar, M. S., Chand, H., Kumar, S., Srinivasan, K., & Ganju, A. (2010). Climate-change studies in the western Himalaya. Annals of Glaciology, 51(54), 105–112. https://doi.org/10.3189/172756410791386508

    Article  Google Scholar 

  • Shrestha, A. B., & Aryal, R. (2011). Climate change in Nepal and its impact on Himalayan glaciers. Regional Environmental Change, 11(1), 65–77. https://doi.org/10.1007/s10113-010-0174-9

  • Singh, J., & Patel, N. R. (2017). Assessment of agroclimatic suitability of apple orchards in Himachal Pradesh under changing climate. Journal of Agrometeorology, 19(2), 110–113. https://doi.org/10.54386/jam.v19i2.681

  • Singh, N., Sharma, D. P., & Chand, H. (2016). Impact of climate change on apple production in India: A review. Current World Environment, 11(1), 251–259. https://doi.org/10.12944/CWE.11.1.31

    Article  Google Scholar 

  • Snehmani, Dharpure, J. K., Kochhar, I., Ram, R. P. H., & Ganju, A. (2016). Analysis of snow cover and climatic variability in Bhaga basin located in western Himalaya. Geocarto International, 31(10), 1094–1107. https://doi.org/10.1080/10106049.2015.1120350

    Article  Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.

    Article  Google Scholar 

  • Soltani, M., Rousta, I., & Taheri, S. (2013). Using Mann-Kendall and time series techniques for statistical analysis of long-term precipitation in Gorgan weather station. World Applied Sciences Journal, 28(7), 902–908. https://doi.org/10.5829/idosi.wasj.2013.28.07.946

    Article  Google Scholar 

  • Stieglitz, M., Ducharne, A., Koster, R., & Suarez, M. (2001). The impact of detailed snow physics on the simulation of snow cover and subsurface thermodynamics at continental scales. Journal of Hydrometeorology, 2(3), 228–242.

    Article  Google Scholar 

  • Sugiura, T., Ogawa, H., Fukuda, N., & Moriguchi, T. (2013). Changes in the taste and textural attributes of apples in response to climate change. Scientific Reports, 3(1), 2418. https://doi.org/10.1038/srep02418

    Article  Google Scholar 

  • Sugiura, T., & Yokozawa, M. (2004). Impact of global warming on environments for apple and satsuma mandarin production estimated from changes on the annual mean temperature. Journal of the Japanese Society for Horticultural Science, 73(1), 72–78.

    Article  Google Scholar 

  • Townshend, J. R., & Tucker, C. J. (1984). Objective assessment of advanced very high resolution radiometer data for land cover mapping. International Journal of Remote Sensing, 5(2), 497–504. https://doi.org/10.1080/01431168408948829

    Article  Google Scholar 

  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150. https://doi.org/10.1016/0034-4257(79)90013-0

    Article  Google Scholar 

  • Tucker, C. J. (1986). Cover Maximum normalized difference vegetation index images for sub-Saharan Africa for 1983–1985. International Journal of Remote Sensing, 7(11), 1383–1384. https://doi.org/10.1080/01431168608948941

    Article  Google Scholar 

  • Verma, K. S., Mankotia, M. S., Bhardwaj, D. R., Bhardwaj, S. K., Thakur, C. L., & Thakur, M. (2006). Annual Progress Report of the project “Impact Vulnerability and Adaptation of Mountain Agriculture to Climate Change”. ICAR, New Delhi, India.

  • Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., & Zhao, S. (2015). An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing, 7(4), 4268–4289.

    Article  Google Scholar 

  • Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483.

    Article  Google Scholar 

  • Wrege, M. S., Herter, F. G., Steinmetz, S., Reisser Junior, C., Garrastazu, M. C., & Matzenauer, R. (2006). Simulação do impacto do aquecimento global no somatório de horas de frio no Rio Grande do Sul. Embrapa Clima Temperado-Artigo em periódico indexado (ALICE). http://www.alice.cnptia.embrapa.br/handle/doc/990891

  • Xu, H. Q., & CHEN, B. Q. (2004). Remote sensing of the urban heat island and its changes in Xiamen City of SE China. Journal of Environmental Sciences, 16(2), 276–281.

    Google Scholar 

  • Yang, Z.-L., Dickinson, R. E., Hahmann, A. N., Niu, G.-Y., Shaikh, M., Gao, X., Bales, R. C., Sorooshian, S., & Jin, J. (1999). Simulation of snow mass and extent in general circulation models. Hydrological Processes, 13(12–13), 2097–2113.

    Article  Google Scholar 

  • You, Q., Kang, S., Pepin, N., Flügel, W.-A., Yan, Y., Behrawan, H., & Huang, J. (2010). Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Global and Planetary Change, 71(1–2), 124–133. https://doi.org/10.1016/j.gloplacha.2010.01.020

    Article  Google Scholar 

  • Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1–4), 254–271. https://doi.org/10.1016/S0022-1694(01)00594-7

    Article  Google Scholar 

  • Yue, S., & Wang, C. (2004). The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resources Management, 18(3), 201–218. https://doi.org/10.1023/B:WARM.0000043140.61082.60

    Article  Google Scholar 

  • Zhao, W., He, J., Wu, Y., Xiong, D., Wen, F., & Li, A. (2019). An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products. Remote Sensing, 11(8), 900. https://doi.org/10.3390/rs11080900

Download references

Acknowledgements

The authors are grateful to Dr. Debasis Ghosh, former Head of the Department, University of Calcutta, for his kind help and support to complete field visit at Kalpa. All students of Climatology of Tropical Asia, 2018 batch, University of Calcutta, are thankful for their assistance during the primary data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk Mafizul Haque.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 341 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Haque, S.M. & Biswas, B. Altitudinal Shifting of Apple Orchards with Adaption of Changing Climate in the Alpine Himalaya. J Indian Soc Remote Sens 51, 1135–1155 (2023). https://doi.org/10.1007/s12524-023-01678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01678-0

Keywords

Navigation