Skip to main content

Advertisement

Log in

Urban Heat Island Dynamics in Response to Land-Use/Land-Cover Change in the Coastal City of Mumbai

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The rapid urbanization and land-use/land-cover (LU/LC) changes have resulted in the unplanned and unsustainable growth of the Indian cities. This has resulted in a number of environmental issues such as escalating the urban heat island (UHI) intensity over the cities. Therefore, this study was designed to model and quantify the UHI dynamics of Mumbai city in response to the LU/LC change during 1991–2018 using temporal Landsat datasets. The result shows a significant decline in vegetation cover from 215.8 to 129.27 km2, while the built-up areas have almost doubled, i.e., from 173.09 to 346.02 km2 in the Mumbai city during 1991–2018. As a consequence of this, a significant increase in the LST has been noticed in both urban heat island (UHI) and non-UHI zones. Although the areas under UHI zones have not increased significantly, the land surface temperature (LST) gap (difference between minimum and maximum LST) has declined in the Mumbai city from 30.04 °C in 1991 to 20.7 °C in 2018. Further, the minimum and mean LST over each LU/LC classes have also shown a significant increase. On the other hand, the regression analysis shows that the association between UHI and normalized difference built-up index (NDBI) has increased in the city, while the association of vegetation density (NDVI) and normalized difference bareness index (NDBaI) has declined in the city. The study can provide useful insights into the process of urban planning and policy makings for urban spatial planning and UHI mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akpinar, A. (2016). How is quality of urban green spaces associated with physical activity and health? Urban Forestry & Urban Greening, 16, 76–83.

    Article  Google Scholar 

  • Alibakhshi, Z., Ahmadi, M., & Asl, M. F. (2020). Modeling biophysical variables and land surface temperature using the GWR model: case study—Tehran and its satellite Cities. Journal of the Indian Society of Remote Sensing , 48, 59–70.

    Article  Google Scholar 

  • Amiri, R., Weng, Q., Alimohammadi, A., & Alavipanah, S. A. (2009). Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113(12), 2606–2617.

    Article  Google Scholar 

  • Artis, D. A., & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), 313–329.

    Article  Google Scholar 

  • Bazrkar, M. H., Zamani, N., Eslamian, S., Eslamian, A., & Dehghan, Z. (2015). Urbanization and climate change. In W. Leal-Filho (Ed.), Handbook of climate change adaptation (pp. 619–655). Berlin: Springer. https://doi.org/10.1007/978-3-642-38670-1_90

    Chapter  Google Scholar 

  • Bharath, H. A., Chandan, M. C., Vinay, S., & Ramchandra, T. V. (2018). Modelling urban dynamics in rapidly urbanising Indian cities. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 201–210.

    Article  Google Scholar 

  • Bindajam, A. A., Mallick, J., AlQadhi, S., Singh, C. K., & Hang, H. T. (2020). Impacts of vegetation and topography on land surface temperature variability over the semi-arid mountain cities of Saudi Arabia. Atmosphere, 11(7), 762.

    Article  Google Scholar 

  • Census of India (2011) Mumbai (Greater Mumbai) City Census 2011 data. https://www.census2011.co.in/census/city/365-mumbai.html#:~:text=As%20per%20provisional%20reports%20of,males%20and%208%2C522%2C641%20are%20females. Accessed January 2021.

  • Chadchan, J., & Shankar, R. (2012). An analysis of urban growth trends in the post-economic reforms period in India. International Journal of Sustainable Built Environment, 1, 36–49.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.

    Article  Google Scholar 

  • Chapman, S., Thatcher, M., Salazar, A., Watson, J. E. M., & McAlpine, C. A. (2018). The effect of urban density and vegetation cover on the heat island of a subtropical city. Journal of Applied Meteorology and Climatology, 57, 2531–2550.

    Article  Google Scholar 

  • Chapman, S., Watson, J. E., Salazar, A., Thatcher, M., & McAlpine, C. A. (2017). The impact of urbanization and climate change on urban temperatures: A systematic review. Landscape Ecology, 32(10), 1921–1935.

    Article  Google Scholar 

  • Chen, X., Warner, T. A., & Campagna, D. J. (2010). Integrating visible, near-infrared and short-wave infrared hyperspectral and multispectral thermal imagery for geological mapping at Cuprite, Nevada: A rule-based system. International Journal of Remote Sensing, 31(7), 1733–1752.

    Article  Google Scholar 

  • Cui, Y., Xiao, X., Doughty, R., Qin, Y., Liu, S., Li, N., Zhao, G., & Dong, J. (2019). The relationships between urban-rural temperature difference and vegetation in eight cities of the Great Plains. Frontiers in Earth Science, 13, 290–302.

    Article  Google Scholar 

  • Cui, Y., Xu, X., Dong, J., & Qin, Y. (2016). Influence of urbanization factors on surface urban heat island intensity: A comparison of countries at different developmental phases. Sustainability, 8, 706.

    Article  Google Scholar 

  • Daneshvar, M. R. M., Rabbani, G., & Shirvani, S. (2019). Assessment of urban sprawl effects on regional climate change using a hybrid model of factor analysis and analytical network process in the Mashhad city, Iran. Environ Syst Res, 8, 23.

    Article  Google Scholar 

  • Deng, C. B., & Wu, C. S. (2013). Examining the impacts of urban biophysical compositions on surface urban heat island: A spectral unmixing and thermal mixing approach. Remote Sensing of Environment, 131, 262–274.

    Article  Google Scholar 

  • Dinku T (2019) Challenges with availability and quality of climate data in Africa. In Extreme hydrology and climate variability: Monitoring, modelling, adaptation and mitigation. Elsevier: London, pp 71–80

  • Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2019). Changing pattern of urban landscape and its effect on land surface temperature in and around Delhi. Environmental Monitoring and Assessment, 191, 551.

    Article  Google Scholar 

  • Dutta, D., Rahman, A., Paul, S. K., & Kundu, A. (2021). Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Climate, 37, 100799. https://doi.org/10.1016/j.uclim.2021.100799

    Article  Google Scholar 

  • Dwivedi, A., Khire, M. V., Mohan, B. K., & Shah, S. (2019). The role of structure cooling to reduce the effect of urban heat island in Mumbai. Advances in Building Energy Research, 13(2), 174–192.

    Article  Google Scholar 

  • Fabrizi, R., Bonafoni, S., & Biondi, R. (2010). Satellite and ground-based sensors for the urban heat island analysis in the city of Rome. Remote Sens, 2, 1400–1415.

    Article  Google Scholar 

  • Fan, C., Myint, S. W., Kaplan, S., Middel, A., Zheng, B., Rahman, A., Huang, H. P., Brazel, A., & Blumberg, D. G. (2017). Understanding the impact of urbanization on surface urban heat islands—A longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sens, 9(7), 672.

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.

    Article  Google Scholar 

  • Grover, A., & Singh, R. B. (2015). Analysis of urban heat island (UHI) in relation to normalized difference vegetation index (NDVI): A comparative study of Delhi and Mumbai. Environments, 2(2), 125–138.

    Article  Google Scholar 

  • Guha, S., & Govil, H. (2021). An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environment, Development and Sustainability, 23, 1944–1963.

    Article  Google Scholar 

  • Ibrahim, G. R. F. (2017). Urban land use land cover changes and their effect on land surface temperature: Case study using Dohuk City in the Kurdistan Region of Iraq. Climate, 5, 13.

    Article  Google Scholar 

  • Imam, A. U. K., & Banerjee, U. K. (2016). Urbanisation and greening of Indian cities: Problems, practices, and policies. Ambio, 45(4), 442–457.

    Article  Google Scholar 

  • Kalnay, E., & Cai, M. (2003). Impact of urbanization and land-use change on climate. Nature, 423, 528–531.

    Article  Google Scholar 

  • Kant, Y., Bharath, B. D., Mallick, J., Atzberger, C., & Kerle, N. (2009). Satellite-based analysis of the role of land use/land cover and vegetation density on surface temperature regime of Delhi, India. Journal of the Indian Society of Remote Sensing, 37, 201–214.

    Article  Google Scholar 

  • Khan, M. S., Ullah, S., Sun, T., Rehman, A. U., & Chen, L. (2020). Land-use/land-cover changes and its contribution to urban heat island: A case study of Islamabad, Pakistan. Sustainability, 12, 3861.

    Article  Google Scholar 

  • Khorrami, B., & Gunduz, O. (2020). Spatio-temporal interactions of surface urban heat island and its spectral indicators: A case study from Istanbul metropolitan area, Turkey. Environmental Monitoring and Assessment, 192, 386.

    Article  Google Scholar 

  • Kriegler FJ, Malila WA, Nalepka RF, Richardson W (1969) Preprocessing transformations and their effects on multispectral recognition. In Proceedings of the sixth international symposium on remote sensing of environment, University of Michigan, Ann Arbor, MI, pp 97–131

  • Kumari, M., & Sarma, K. (2017). Changing trends of land surface temperature in relation to land use/cover around thermal power plant in Singrauli district, Madhya Pradesh, India. Spatial Information Research, 25, 769–777.

    Article  Google Scholar 

  • Kumari, M., Sharma, K., & Sharma, R. (2019). Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sensing Applications: Society and Environment, 15, 100239. https://doi.org/10.1016/j.rsase.2019.100239

    Article  Google Scholar 

  • Lakra, K., & Sharma, D. (2019). Geospatial assessment of urban growth dynamics and land surface temperature in Ajmer Region, India. Journal of the Indian Society of Remote Sensing, 47, 1073–1089.

    Article  Google Scholar 

  • Leal Filho, W., Wolf, F., Castro-Díaz, R., Li, C., Ojeh, V. N., Gutiérrez, N., Nagy, G. J., Savić, S., Natenzon, C. E., Quasem Al-Amin, A., Maruna, M., & Bönecke, J. (2021). Addressing the urban heat Islands effect: A cross-country assessment of the role of green infrastructure. Sustainability, 13(2), 753.

    Article  Google Scholar 

  • Li, Y., Schubert, S., Kropp, J. P., & Rybski, D. (2020). On the influence of density and morphology on the Urban Heat Island intensity. Nature Communications, 11, 2647.

    Article  Google Scholar 

  • Liu C, Li Y (2018) Spatio-temporal features of urban heat island and its relationship with land use/cover in mountainous city: A case study in Chongqing. Sustainability 10(6): 1943

  • Ma, Y., Kuang, Y., & Huang, N. (2010). Coupling urbanization analyses for studying urban thermal environment and its interplay with biophysical parameters based on TM/ETM+ imagery. International Journal of Applied Earth Observation and Geoinformation, 12(2), 110–118.

    Article  Google Scholar 

  • Mandal, J., Ghosh, N., & Mukhopadhyay, A. (2019). Urban growth dynamics and changing land-use land-cover of megacity Kolkata and its environs. Journal of the Indian Society of Remote Sensing, 47, 1707–1725.

    Article  Google Scholar 

  • Manoli, G., Fatichi, S., Schläpfer, M., Yu, K., et al. (2019). Magnitude of urban heat islands largely explained by climate and population. Nature, 573, 55–60.

    Article  Google Scholar 

  • Martin-Vide, J., Sarricolea, P., & Moreno-García, M. C. (2015). On the definition of urban heat island intensity: the “rural” reference. Frontiers in Earth Science, 3, 24.

    Article  Google Scholar 

  • Marzban, F., Sodoudi, S., & Preusker, R. (2018). The influence of land-cover type on the relationship between NDVI–LST and LST-Tair. International Journal of Remote Sensing, 39(5), 1377–1398.

    Article  Google Scholar 

  • Meng, X., Meng, F., Zhao, Z., & Yin, C. (2021). Prediction of urban heat island effect over Jinan City using the markov-cellular automata model combined with urban biophysical descriptors. Journal of the Indian Society of Remote Sensing, 49, 997–1009.

    Article  Google Scholar 

  • Miller, J. D., & Hutchins, M. (2017). The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. Journal of Hydrology: Regional Studies, 12, 345–362.

    Google Scholar 

  • MMRDA (2016) Draft development control regulations for Mumbai metropolitan region 2016–2036. Mumbai metropolitan region development authority (MMRDA) Building, Bandra-Kurla Complex, Bandra (East), Mumbai-400 051 https://mmrda.maharashtra.gov.in (Retrieved April 2021).

  • Moghadam, H. A., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149.

    Article  Google Scholar 

  • Montazeri, M., & Masoodian, S. A. (2020). Tempo-spatial behavior of surface urban heat island of Isfahan metropolitan area. Journal of the Indian Society of Remote Sensing, 48, 263–270.

    Article  Google Scholar 

  • Morabito, M., Crisci, A., Georgiadis, T., et al. (2017). Urban imperviousness effects on summer surface temperatures nearby residential buildings in different urban zones of Parma. Remote Sens, 10, 26.

    Article  Google Scholar 

  • Naikoo, M. W., Rihan, M., Ishitaque, M., & Shahfahad. (2020). Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. Journal of Urban Management, 9(3), 347–359.

    Article  Google Scholar 

  • Nazeer, M., Nichol, J. E., & Yung, K. T. (2014). Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. International Journal of Remote Sensing, 35(16), 6271–6291.

    Article  Google Scholar 

  • NRSC (1995) Natural resource census‐ land use land cover database. Technical Report–Ver.1. https://bhuvan-app1.nrsc.gov.in/2dresources/thematic/2LULC/lulc1112.pdf. Accessed December 2020

  • Pal, S., & Ziaul, S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt Journal of Remote Sens Space: Regional Studies, 20(1), 125–145.

    Article  Google Scholar 

  • Phadke, A. (2014). Mumbai metropolitan region: Impact of recent urban change on the peri-urban areas of Mumbai. Urban Studies, 51(11), 2466–2483.

    Article  Google Scholar 

  • Phiri, D., & Morgenroth, J. (2017). Developments in landsat land cover classification methods: A review. Remote Sens, 9, 967.

    Article  Google Scholar 

  • Pramanik, S., & Punia, M. (2020). Land use/land cover change and surface urban heat island intensity: Source–sink landscape-based study in Delhi. Environ Dev Sustain. https://doi.org/10.1007/s10668-019-00515-0

    Book  Google Scholar 

  • Rahaman, S., Jahangir, S., Haque, M. S., Chen, R., & Kumar, P. (2020). Spatio-temporal changes of green spaces and their impact on urban environment of Mumbai, India. Environment, Development and Sustainability, 23, 6481–6501.

    Article  Google Scholar 

  • Rahman, A., Kumar, S., Fazal, S., & Siddiqui, M. A. (2012). Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. Journal of Indian Societys Remote Sensings, 40, 689–697.

    Article  Google Scholar 

  • Rana, A., Foster, K., Bosshard, T., Olsson, J., & Bengtsson, L. (2014). Impact of climate change on rainfall over Mumbai using distribution-based scaling of global climate model projections. Journal of Hydrology: Regional Studies, 1, 107–128.

    Google Scholar 

  • Rani, V. R., Pandalai, H. S., Sajinkumar, K. S., & Pradeepkumar, A. P. (2015). Geomorphology and its implication in urban groundwater environment: Case study from Mumbai, India. Applied Water Science, 5, 137–151.

    Article  Google Scholar 

  • Rey-Sánchez, A. C., Slot, M., Posada, J. M., & Kitajima, K. (2016). Spatial and seasonal variation in leaf temperature within the canopy of a tropical forest. Climate Resrech, 71, 75–89.

    Article  Google Scholar 

  • Roy, S. S., & Balling, R. C., Jr. (2005). Analysis of trends in maximum and minimum temperature, diurnal temperature range, and cloud cover over India. Geophysical Research Letters, 32, L12702.

    Article  Google Scholar 

  • Sahana, M., Dutta, S., & Sajjad, H. (2019). Assessing land transformation and its relation with land surface temperature in Mumbai city, India using geospatial techniques. International Journal of Urban Sciences, 23(2), 205–225.

    Article  Google Scholar 

  • Sahany, S., Venugopal, V., & Nanjundiah, R. S. (2010). The 26 July 2005 heavy rainfall event over Mumbai: Numerical modeling aspects. Meteorology and Atmospheric Physics, 109, 115–128.

    Article  Google Scholar 

  • Salem, M., Tsurusaki, N., & Divigalpitiya, P. (2020). Land use/land cover change detection and urban sprawl in the peri-urban area of greater Cairo since the Egyptian revolution of 2011. Journal of Land Use Science, 15(5), 592–606.

    Article  Google Scholar 

  • Sarkar, R. (2019). Urbanization in India before and after the economic reforms: What does the Census data reveal? Journal of Asian and African Studies, 54(8), 1213–1226.

    Article  Google Scholar 

  • Shahfahad., Kumari, B., Tayyab, M., Ahmed, I. A., Baig, M. R. I., Khan, M. F., et al. (2020). Longitudinal study of land surface temperature (LST) using mono- and split-window algorithms and its relationship with NDVI and NDBI over selected metro cities of India. Arabian Journal of Geosciences, 13, 1040.

    Article  Google Scholar 

  • Shahfahad., Kumari, B., Tayyab, M., Hang, H. T., Khan, M. F., & Rahman, A. (2019). Assessment of public open spaces (POS) and landscape quality based on per capita POS index in Delhi, India. SN Applied Science, 1, 368.

    Article  Google Scholar 

  • Sharifi, A., & Hosseingholizadeh, M. (2019). The effect of rapid population growth on urban expansion and destruction of green space in Tehran from 1972 to 2017. Journal of the Indian Society of Remote Sensing, 47, 1063–1071.

    Article  Google Scholar 

  • Sharma, R., Pradhan, L., Kumari, M., & Bhattacharya, P. (2021). Assessing urban heat islands and thermal comfort in Noida City using geospatial technology. Urban Climate, 35, 100751. https://doi.org/10.1016/j.uclim.2020.100751

    Article  Google Scholar 

  • Sherafati, S., Saradjian, M. R., & Rabbani, A. (2018). Assessment of surface urban heat island in three cities surrounded by different types of land-cover using satellite images. Journal of the Indian Society of Remote Sensing, 46, 1013–1022.

    Article  Google Scholar 

  • Singh, R., & Kalota, D. (2019). Urban sprawl and its impact on generation of urban heat island: A case study of Ludhiana City. Journal of the Indian Society of Remote Sensing, 47, 1567–1576.

    Article  Google Scholar 

  • Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of Environment, 90(4), 434–440.

    Article  Google Scholar 

  • Sun, D., & Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophysical Research Letters, 34(24), L24406.

    Article  Google Scholar 

  • Talukdar, S., Singha, P., Mahato, S., Shahfahad, P. S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135.

    Article  Google Scholar 

  • United Nations (2018) World Urbanization Prospects 2018. https://population.un.org/wup/Publications/Files/WUP2018-KeyFacts.pdf. Accessed October 2020.

  • Veena, K., Parammasivam, K. M., & Venkatesh, T. N. (2020). Urban Heat Island studies: Current status in India and a comparison with the International studies. Journal of Earth System Science, 129, 85.

    Article  Google Scholar 

  • Vinayak, B., Lee, H. S., & Gedem, S. (2021). Prediction of land use and land cover changes in Mumbai City, India, using remote sensing data and a multilayer perceptron neural network-based Markov chain model. Sustainability, 13, 471.

    Article  Google Scholar 

  • Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, 86, 370–384.

    Article  Google Scholar 

  • Xiao, H., & Weng, Q. (2007). The impact of land use and land cover changes on land surface temperature in a karst area of China. The Journal of Environmental Management, 85, 245–257.

    Article  Google Scholar 

  • Xu, G., Jiao, L., Liu, J., Zeng, C., & Liu, Y. (2019). Understanding urban expansion combining macro patterns and micro dynamics in three Southeast Asian megacities. Science of the Total Environment, 660, 375–383.

    Article  Google Scholar 

  • Yu, X., Guo, X., & Wu, Z. (2014). Land surface temperature retrieval from landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10), 9829–9852.

    Article  Google Scholar 

  • Yusuf, Y. A., Pradhan, B., & Idrees, M. O. (2014). Spatio-temporal assessment of urban heat island effects in Kuala Lumpur metropolitan city using landsat images. Journal of the Indian Society of Remote Sensing, 42, 829–837.

    Article  Google Scholar 

  • Zha, Y., Gao, J., & Ni, S. (2003). Use of normalized difference bulit-up in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24, 583–594.

    Article  Google Scholar 

  • Zhang, X., Wang, D., Hao, H., Zhang, F., & Hu, Y. (2017). Effects of land use/cover changes and urban forest configuration on urban heat islands in a loess hilly region: Case study based on Yan’an City, China. International Journal of Environmental Research and Public Health, 14(8), 840.

    Article  Google Scholar 

  • Zhao, J., Yu, L., Xu, Y., Li, X., Zhou, Y., Peng, D., Liu, H., Huang, X., Zhou, Z., Wang, D., Ren, C., & Gong, P. (2020). Exploring difference in land surface temperature between the city centres and urban expansion areas of China’s major cities. International Journal of Remote Sensing, 41(23), 8963–8983.

    Article  Google Scholar 

  • Zhou, B., Rybski, D., & Kropp, J. P. (2013). On the statistics of urban heat island intensity. Geophysical Research Letters, 40, 5486–5491.

    Article  Google Scholar 

  • Zhou, B., Rybski, D., & Kropp, J. P. (2017). The role of city size and urban form in the surface urban heat island. Science and Reports, 7, 4791.

    Article  Google Scholar 

  • Zhou, L. M., Dickinson, R. E., Tian, Y. H., Fang, J. Y., Li, Q. X., Kaufman, R. K., Tucker, C. J., & Myneni, R. B. (2004). Evidence for a significant urbanization effect on climate in China. Proceedings of the National Academy of Sciences of the United States of America, 101, 9540–9544.

    Article  Google Scholar 

Download references

Acknowledgements

The first author of this research is grateful to the University Grant Commission (UGC) for providing the financial support in the form of Junior Research Fellowship (JRF) to carry out the Doctoral research. The authors also thank the US Geological Survey (USGS) for availing the satellite data freely accessible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atiqur Rahman.

Ethics declarations

Conflict of interest

I declare that there is no conflict of interest on any financial or other issues among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahfahad, Rihan, M., Naikoo, M.W. et al. Urban Heat Island Dynamics in Response to Land-Use/Land-Cover Change in the Coastal City of Mumbai. J Indian Soc Remote Sens 49, 2227–2247 (2021). https://doi.org/10.1007/s12524-021-01394-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01394-7

Keywords

Navigation