Skip to main content

Advertisement

Log in

Evaluation of Winds from SCATSAT-1 and ASCAT Using Buoys in the Indian Ocean

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Over the data sparse oceanic region, ocean surface winds from scatterometers on-board satellites play a crucial role to make accurate Numerical Weather Prediction model-based analysis. In the present study, ocean surface winds derived from the recently launched SCATSAT-1 for the year 2017 over the Indian Ocean are validated against the winds from the Moored and RAMA buoys. The validation results for ASCAT winds for the same period are also presented. The comparison of SCATSAT-1 (ASCAT) winds against offshore OMNI buoy winds indicates that the mean differences for wind speed and wind direction are 0.5 m/s and  – 1.0° (0.39 m/s and  – 4.0°), and the RMSEs are 1.44 m/s and 23.0° (1.17 m/s and 25.0°), respectively. For the coastal OMNI buoys, the SCATSAT-1 (ASCAT) indicated that the mean differences for wind speed and wind direction are 1.6 m/s and  – 5° (1.15 m/s and  – 0.4°), and the RMSEs are 2.65 m/s and 46 deg, (2.1 m/s and 51°), respectively. Quantified differences are almost similar for the comparison of SCATSAT-1/ASCAT with RAMA buoys. Overall, the quantified differences in the wind speed and direction between the SCATSAT-1 and buoys are closer to the satellite’s mission specifications of 1.8 m/s and 20°, respectively, and at par with the ASCAT accuracies. The capability of SCATSAT-1 winds to capture a cyclonic storm OCKHI during December 2017 also is depicted. The present study endorses that the SCATSAT-1 data are accurate and reliable and can be used in Numerical Weather Prediction (NWP) models and also for other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accadia, C., Zecchetto, S., Lavagnini, A., & Speranza, A. (2007). Comparison of 10-m Wind Forecasts from a Regional Area Model and QuikSCAT Scatterometer Wind Observations over the Mediterranean Sea. Mon. Wea. Rev., 135, 1945–1960. https://doi.org/10.1175/MWR3370.1

    Article  Google Scholar 

  • Bhowmick, S. A., Cotton, J., Fore, A., Kumar, R., Payan, C., Rodríguez, E., Sharma, A., Stiles, B., Stoffelen, Ad., & Verhoef, A.. (2019). An assessment of the performance of ISRO’s SCATSAT-1 Scatterometer. Current Science, 117(6), 959–972.

  • Bhowmick, S. A., Kumar, R., & Kumar, A. K. (2014). Cross calibration of the OceanSAT-2 scatterometer with QuikSCAT scatterometer using natural terrestrial targets. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3393–3398.

    Article  Google Scholar 

  • Chakraborty, A., Deb, S. K., Shikakolli, R., Gohil, B. S., & Kumar, R. (2013b). Intercomparison of OSCAT winds with numerical-model-generated winds. IEEE Geoscience and Remote Sensing Letters, 10(2), 260–262.

    Article  Google Scholar 

  • Chakraborty, A., Kumar, R., & Stoffelen, A. (2013a). Validation of ocean surface winds from the OCEANSAT-2 scatterometer using triple collocation. Remote sensing letters, 4(1), 84–93.

    Article  Google Scholar 

  • Davidson, K. L., Boyle, P. J., & Guest, P. S. (1992). Atmospheric boundary layer properties affecting wind forecasting in coastal regions. Journal of Applied Meteorology, 31(8), 983–994.

    Article  Google Scholar 

  • Figa-Saldaña, J., Wilson, J.J., Attema, E., Gelsthorpe, R., Drinkwater, M.R. and Stoffelen, A.(2002). The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Canadian Journal of Remote Sensing, 28(3), 404–412.

  • Gopalan, K., Sikhakolli, R., & Chakraborty, A. (2019). A Bayesian Estimation Technique for Improving the Accuracy of SCATSAT-1 Winds in Rainy Conditions. IEEE Journal of Selected Topics in Applied earth observations and Remote Sensing, 12(5), 1362–1368. https://doi.org/10.1109/JSTARS.2019.2904088

    Article  Google Scholar 

  • Harikumar, R., Balakrishnan Nair, T. M., Rao, B. M., Rajendra Prasad, P., Phani Ramakrishna, C., Nagaraju, M. R., Kumar, C., Jeyakumar, S. S. C. S., & Shailesh, N. (2016). Ground-zero met–ocean observations and attenuation of wind energy during cyclonic storm Hudhud. Current Science, 110(12), 2245–2252.

    Article  Google Scholar 

  • IMD (2017). Very Severe Cyclonic Storm “Ockhi” over Bay of Bengal (29 November– 06 December 2017): A Report. http://www.rsmcnewdelhi.imd.gov.in/images/pdf/publications/preliminary-report/cs29nov-06dec.pdf

  • Jaiswal, N., Kumar, P., & Kishtawal, C. M. (2019). SCATSAT-1 wind products for tropical cyclone monitoring, prediction and surface wind structure analysis. Current Science., 117(6), 983–992.

    Article  Google Scholar 

  • Johny, C.J., Singh, S.K. and Prasad, V.S. (2019). Validation and Impact of SCATSAT-1 Scatterometer Winds, Pure and Applied Geophysics, 1–20.

  • Kumar, P., Kumar, K. H., & Pal, P. K. (2013b). Impact of Oceansat-2 scatterometer winds and TMI observations on Phet cyclone simulation. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3774–3779.

    Article  Google Scholar 

  • Kumar, R., Bhowmick, S. A., Chakraborty, A., Sharma, A., Sharma, S., Seemanth, M., Gupta, M., Chakraborty, P., Modi, J., & Misra, T. (2019). Post-launch calibration–validation and data quality evaluation of SCATSAT-1. Current Science, 117(6), 973–982.

  • Kumar, R., Chakraborty, A., Parekh, A., Sikhakolli, R., Gohil, B. S., & Kumar, A. K. (2013a). Evaluation of Oceansat-2-derived ocean surface winds using observations from global buoys and other scatterometers. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2571–2576.

    Article  Google Scholar 

  • Lin W, Portabella M, Stoffelen A, Verhoef A, Wang Z. (2018). Validation of the NSCAT-5 Geophysical Model Function for Scatsat-1 Wind Scatterometer. IEEE International Geoscience and Remote Sensing Symposium, pp. 3196–3199.

  • Liu WT, and Tang W (1996). Equivalent Neutral Wind. JPL Publ. 96–17, Jet Propulsion Laboratory, Pasadena, US, 16p.

  • Mandal, S., Sil, S., Shee, A., Swain, D., & Pandey, P. C. (2018). Comparative analysis of SCATSAT-1 gridded winds with Buoys, ASCAT, and ECMWF winds in the Bay of Bengal. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3), 845–851. https://doi.org/10.1109/JSTARS.2018.2798621

    Article  Google Scholar 

  • Mankad, D., Sikhakolli, R., Kakkar, P., Saquib, Q., Agrawal, K. M., Gurjar, S., Jain, D. K., Ramanujam, V. M., & Thapliyal, P. (2019). SCATSAT-1 Scatterometer data processing. Current Science, 117(6), 950–958.

    Article  Google Scholar 

  • McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S. N., Ravichandran, M., Syamsudin, F., Vialard, J., Yu, L., & Yu, W. (2009). RAMA: the research moored array for African–Asian–Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90(4), 459–480.

    Article  Google Scholar 

  • Misra, T., Chakraborty, P., Lad, C., Gupta, P., Rao, J., Upadhyay, G., Vinay Kumar, S., Saravana Kumar, B., Gangele, S., Sinha, S., Tolani, H., Vithani, V. K., Raman, B. S., Rao, C. V. N., Dave, D. B., Jyoti, R., & Desai, N. M. (2019). SCATSAT-1 Scatterometer: an improved successor of OSCAT. Current Science, 117(6), 941–949.

    Article  Google Scholar 

  • Misra, T., Chakraborty, P., Misra, A., Rao, J., Dave, D. B., Rao, C. V. N., Desai, N. M., & Arora, R. (2014). Oceansat-II Scatterometer: Sensor Performance Evaluation, Analyses, and Estimation of Biases. IEEE Transactions on Geoscience and Remote Sensing, 52(6), 3310–3315.

    Article  Google Scholar 

  • Peixoto, J. P., & Oort, A. H. (1992). Physics of Climate. American Institute of Physics, New york.

    Book  Google Scholar 

  • Rani, S. I., & Gupta, M. D. (2013). Oceansat-2 and RAMA buoy winds: A comparison. Journal of earth system science, 122(6), 1571–1582.

    Article  Google Scholar 

  • Rao Y R and Premkumar K (1998). A preliminary analysis of meteorological and oceanographic observations during the passage of a tropical cyclone in Bay of Bengal; NIOT technical note, NIOT-NDBP-TR-001/98

  • Sathiyamoorthy, V., Sikhakolli, R., Gohil, B. S., & Pal, P. K. (2012). Intra-seasonal variability in Oceansat-2 scatterometer sea-surface winds over the Indian summer monsoon region. Meteorology and Atmospheric Physics, 117(3–4), 145–152.

    Article  Google Scholar 

  • Singh, R., Kumar, P., & Pal, P. K. (2012). Assimilation of Oceansat-2-scatterometer-derived surface winds in the weather research and forecasting model. IEEE Transactions on Geoscience and Remote Sensing, 50(4), 1015–1021.

    Article  Google Scholar 

  • Sirisha, P., Remya, P. G., Modi, A., Tripathy, R. R., Balakrishnan Nair, T. M., & Venkateswara Rao, B. V. (2019). Evaluation of the impact of high-resolution winds on the coastal waves. Journal of Earth System Science, 128, 226. https://doi.org/10.1007/s12040-019-1247-x

    Article  Google Scholar 

  • Stoffelen, A., Verhoef, A., Verspeek, J., Vogelzang, J., Driesenaar, T., Risheng, Y., Payan, C., De Chiara, G., Cotton, J., Bentamy, A., Portabella, M., & Marseille, G. J. (2013). Research and Development in Europe on Global Application of the OceanSat-2 Scatterometer Winds, EUMETSAT NWP SAF report number: NWPSAF- KN-TR-022, EUMETSAT OSI SAF report number: SAF/OSI/CDOP2/KNMI/TEC/RP/196.

  • Stoffelen, A., Verspeek, J. A., Vogelzang, J., & Verhoef, A. (2017). The CMOD7 Geophysical Model Function for ASCAT and ERS Wind Retrievals. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 2123–2134. https://doi.org/10.1109/JSTARS.2017.2681806

    Article  Google Scholar 

  • Ulaby FT, Moore RK, and Fung AK. (1982) Microwave remote sensing: Active and passive. Volume 2 - Radar remote sensing and surface scattering and emission theory.

  • Venkatesan, R., Shamji, V. R., Latha, G., Simi Mathew, R. R., Rao, A. M., & Atmanand, M. A. (2013). In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal". Current Science, 104(9), 1166–1177.

    Google Scholar 

  • Verhoef, A., Portabella, M., & Stoffelen, Ad. (2012). High-resolution ASCAT scatterometer winds near the coast. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2481–2487.

    Article  Google Scholar 

  • Verhoef, A., Vogelzang, J. and Stoffelen, A. (2018). ScatSat-1 wind validation report 1.0, Document external project:2018, SAF/OSI/CDOP3/KNMI/TEC/RP/324, EUMETSAT.

  • Verspeek, J., et al. (2010). Validation and Calibration of ASCAT using CMOD5.n. IEEE transaction on Geoscience and Remote Sensing, 48, 1. https://doi.org/10.1109/TGRS.2009.2027896

    Article  Google Scholar 

  • Xu, X., & Stoffelen, A. (2020). Improved Rain Screening for Ku-Band Wind Scatterometry. IEEE Transactions on Geoscience and Remote sensing, 58(4), 2494–2503. https://doi.org/10.1109/TGRS.2019.2951726

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Director, ESSO-INCOIS, Ministry of Earth Sciences (MoES), for providing the necessary facilities. Secretary, MoES, is thanked for the support and encouragement. We are also thankful to ESSO-NIOT for providing the moored buoy data, National Remote Sensing Center (NRSC) for providing SCATSAT-1 data, KNMI for the distribution of ASCAT data and the NOAA Pacific Marine Environmental Laboratory (PMEL) for RAMA buoy data. This is INCOIS contribution number 408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Modi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, A., Munaka, S.K., Harikumar, R. et al. Evaluation of Winds from SCATSAT-1 and ASCAT Using Buoys in the Indian Ocean. J Indian Soc Remote Sens 49, 1915–1925 (2021). https://doi.org/10.1007/s12524-021-01335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-021-01335-4

Keywords

Navigation