Skip to main content
Log in

Agricultural Field Detection from Satellite Imagery Using the Combined Otsu’s Thresholding Algorithm and Marker-Controlled Watershed-Based Transform

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

An accurate detection of agricultural fields is often needed for agricultural-related applications, such as subsidies monitoring, field-based crop yield estimation and agricultural statistics extraction. High-resolution space images have become the fundamental source to extract agricultural field boundaries. Manual boundary delineation is not practical. In this study, we present an approach to detect agricultural fields from satellite images on the basis of agricultural field blocks. An agricultural field block consists of one or more fields that are owned by the farmers. The approach combines the Otsu’s thresholding algorithm and marker-controlled watershed (MCW)-based segmentation. First, the well-separated field segments within a field block being considered are detected through recursive processing of the Otsu’s thresholding algorithm. Then, these distinct field segments are used to generate a marker image, and further extraction of individual fields is carried out through a marker-controlled watershed (MCW)-based segmentation. The approach was tested using 10-m resolution Satellite Pour l’Observation de la Terre (SPOT)-5 multi-spectral (XS) image, 4-m resolution IKONOS XS image, 2.40-m resolution QuickBird XS image, and 0.60-m resolution QuickBird pan-sharpened (PS) image. The results were evaluated using the reference field boundary dataset. The achieved overall accuracies were 89.7, 83.2, 81.0, and 77.4% for the IKONOS XS, QuickBird XS, SPOT-5 XS, and QuickBird PS images, respectively. The results are promising and indicate that the approach can be used for the extraction of agricultural fields from space imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul Hakeem, K., & Raju, P. V. (2009). Use of high-resolution satellite data for the structural and agricultural inventory of tank irrigation systems. International Journal of Remote Sensing, 30(14), 3613–3623.

    Article  Google Scholar 

  • Anderson, J. E., Fischer, R. L., & Deloach, S. R. (1999). Remote sensing and precision agriculture: Ready for harvest or still maturing? Photogrammetric Engineering and Remote Sensing, 65(10), 1118–1123.

    Google Scholar 

  • Aplin, P., & Atkinson, P. M. (2004). Predicting missing field boundaries to increase per-field classification accuracy. Photogrammetric Engineering and Remote Sensing, 70(1), 141–149.

    Article  Google Scholar 

  • Aplin, P., Atkinson, P. M., & Curran, P. J. (1999). Fine spatial resolution simulated satellite sensor imagery for land cover mapping in the United Kingdom. Remote Sensing of Environment, 68(3), 206–216.

    Article  Google Scholar 

  • Ban, Y., Treitz, P. M., Howarth, P. J., Brisco, B., & Brown, R. J. (1995). Improving the accuracy of Synthetic Aperture Radar analysis for agricultural crop classification. Canadian Journal of Remote Sensing, 21(1), 158–164.

    Article  Google Scholar 

  • Beucher, S. (1992). The watershed transformation applied to image segmentation. Scanning Microscopy Supplement, 6, 299–314.

    Google Scholar 

  • Beucher, S., & Meyer, F. (1993). The morphological approach to segmentation: The watershed transformation. In E. Dougherty (Ed.), Mathematical morphology in image processing. New York: Marcel Dekker.

    Google Scholar 

  • Blaes, X., Vanhalle, L., Dautrebande, G., & Defourny, P. (2001). Operational control with remote sensing of area-based subsidies in the framework of the common agricultural policy: What role for the SAR sensors? In Proceedings of the third international symposium on retrieval of bio- and geophysical parameters from SAR data for land applications, Sheffield, 11–14 September (pp. 87–92).

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 2–16.

    Article  Google Scholar 

  • Butenuth, M., & Heipke, C. (2012). Network snakes: Graph-based object delineation with active contour models. Machine Vision and Applications, 23, 91–109.

    Article  Google Scholar 

  • Butenuth, M., Straub, B. M., & Heipke, C. (2004). Automatic extraction of field boundaries from aerial imagery. In KDNet symposium: Knowledge based services for the public sector, Bonn, 3–4 June (p. 12).

  • Chrisman, N. R. (1989). Modeling error overlaid categorical maps. In M. F. Goodchild & S. Gopal (Eds.), Accuracy of spatial databases (pp. 21–34). London: Taylor and Francis.

    Google Scholar 

  • Congalton, R. G., Balogh, M., Bell, C., Green, K., Milliken, J. A., & Ottman, R. (1998). Mapping and monitoring agricultural crops and other land cover in the lower Colorado River Basin. Photogrammetric Engineering and Remote Sensing, 64(11), 1107–1113.

    Google Scholar 

  • Conrad, C., Fritsch, S., Zeidler, J., Rücker, G., & Dech, S. (2010). Per-field irrigated crop classification in arid Central Asia using SPOT and ASTER data. Remote Sensing, 2(4), 1035–1056.

    Article  Google Scholar 

  • Csornai, G., László, I., Suba, Z., Nádor, G., Bognár, E., Hubik, I., et al. (2007). The integrated utilization of satellite images in Hungary: Operational applications from crop monitoring to ragweed control. In Z. Bochenek (Ed.), New developments and challenges in remote sensing (pp. 15–23). Rotterdam: Millpress.

    Google Scholar 

  • Da Costa, J. P., Michelet, F., Germain, C., Lavialle, O., & Grenier, G. (2007). Delineation of vine parcels by segmentation of high resolution remote sensed images. Precision Agriculture, 8(1–2), 95–110.

    Article  Google Scholar 

  • Enclona, E. A., Thenkabail, P. S., Celis, D., & Diekmann, J. (2004). Within-field wheat yield prediction from IKONOS data: A new matrix approach. International Journal of Remote Sensing, 25(2), 377–388.

    Article  Google Scholar 

  • Gaetano, R., Masi, G., Poggi, G., Verdoliva, L., & Scarpa, G. (2015). Marker-controlled watershed-based segmentation of multiresolution remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 2987–3004.

    Article  Google Scholar 

  • Garcia-Pedrero, A., Gonzalo-Martin, C., & Lillo-Saavedra, M. (2017). A machine learning approach for agricultural parcel delineation through agglomerative segmentation. International Journal of Remote Sensing, 38(7), 1809–1819.

    Article  Google Scholar 

  • Gómez, W., Leija, L., Alvarenga, A. V., Infantosi, A. F. C., & Pereira, W. C. A. (2010). Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Medical Physics, 37(1), 82–95.

    Article  Google Scholar 

  • Gonzalez, R. C., & Woods, R. E. (2008). Digital ımage processing (3rd ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Graesser, J., & Ramankutty, N. (2017). Detection of cropland field parcels from Landsat imagery. Remote Sensing of Environment, 201, 165–180.

    Article  Google Scholar 

  • Ishida, T., Itagaki, S., Sasaki, Y., & Ando, H. (2004). Application of wavelet transform for extracting edges of paddy fields from remotely sensed images. International Journal of Remote Sensing, 25(2), 347–357.

    Article  Google Scholar 

  • Janssen, L. L. F., Jaarsma, M. N., & Van Der Linden, E. T. M. (1990). Integrating topographic data with remote sensing for land-cover classification. Photogrammetric Engineering and Remote Sensing, 56(11), 1503–1506.

    Google Scholar 

  • Janssen, L. L. F., & Molenaar, M. (1995). Terrain objects, their dynamics, and their monitoring by the integration of GIS and remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 33(3), 749–758.

    Article  Google Scholar 

  • Ji, C. Y. (1996). Delineating agricultural field boundaries from TM imagery using dyadic wavelet transforms. ISPRS Journal of Photogrammetry and Remote Sensing, 51(6), 268–283.

    Article  Google Scholar 

  • Jing, L., Hu, B., Li, J., & Noland, T. (2012). Automated delineation of individual tree crowns from Lidar data by multi-scale analysis and segmentation. Photogrammetric Engineering and Remote Sensing, 78(12), 1275–1284.

    Article  Google Scholar 

  • Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., & Shelestov, A. Y. (2016). Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1A data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(6), 2500–2508.

    Article  Google Scholar 

  • Li, P., & Xiao, X. (2007). Multispectral image segmentation by a multichannel watershed-based approach. International Journal of Remote Sensing, 28(19), 4429–4452.

    Article  Google Scholar 

  • Li, Y., Zhu, L., Gong, P., & Shimamura, H. (2010). A refined marker controlled watershed for building extraction from DSM and imagery. International Journal of Remote Sensing, 31(6), 1441–1452.

    Article  Google Scholar 

  • Mattikali, N. M., Devereux, B. J., & Richards, K. S. (1995). Integration of remotely sensed satellite images with a geographical information system. Computers and Geosciences, 21(8), 947–956.

    Article  Google Scholar 

  • Mueller, M., Segl, K., & Kaufmann, H. (2004). Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery. Pattern Recognition, 37(8), 1619–1628.

    Article  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions On Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26, 1277–1294.

    Article  Google Scholar 

  • Pedley, M. I., & Curran, P. J. (1991). Per-field classification: An example using SPOT-HRV imagery. International Journal of Remote Sensing, 12(11), 2181–2192.

    Article  Google Scholar 

  • Rabatel, G., Delenne, C., & Deshayes, M. (2008). A non-supervised approach using Gabor filters for vine-plot detection in aerial images. Computers and Electronics in Agriculture, 62, 159–168.

    Article  Google Scholar 

  • Rydberg, A., & Borgefors, G. (2001). Integrated method for boundary delineation of agricultural fields in multispectral satellite images. IEEE Transactions on Geoscience and Remote Sensing, 39(11), 2514–2520.

    Article  Google Scholar 

  • Smith, G. M., & Fuller, R. M. (2001). An integrated approach to land cover classification: An example in the Island of Jersey. International Journal of Remote Sensing, 22(16), 3123–3142.

    Article  Google Scholar 

  • Su, T., Li, H., Zhang, S., & Li, Y. (2015). Image segmentation using mean shift for extracting croplands from high-resolution remote sensing imagery. Remote Sensing Letters, 6(12), 952–961.

    Article  Google Scholar 

  • Tarabalka, Y., Benediktsson, J. A., Chanussot, J., & Tilton, J. C. (2010). Multiple spectral-spatial classification approach for hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 48(11), 4122–4132.

    Google Scholar 

  • Tiwari, P. S., Pande, H., Kumar, M., & Dadhwal, V. K. (2009). Potential of IRS P-6 LISS IV for agriculture field boundary delineation. Journal of Applied Remote Sensing, 3, 1–9.

    Article  Google Scholar 

  • Torre, M., & Radeva, P. (2000). Agricultural field extraction from aerial images using a region competition algorithm. International Archives of Photogrammetry and Remote Sensing, 33(Part B3), 889–896.

    Google Scholar 

  • Tso, B., & Mather, P. M. (1999). Crop discrimination using multi-temporal SAR imagery. International Journal of Remote Sensing, 20(12), 2443–2460.

    Article  Google Scholar 

  • Turker, M., & Arikan, M. (2005). Sequential masking classification of multi-temporal Landsat7 ETM+ images for field-based crop mapping in Karacabey, Turkey. International Journal of Remote Sensing, 26(17), 3813–3830.

    Article  Google Scholar 

  • Turker, M., & Kok, E. H. (2013). Field-based sub-boundary extraction from remote sensing imagery using perceptual grouping. ISPRS Journal of Photogrammetry and Remote Sensing, 79, 106–121.

    Article  Google Scholar 

  • Turker, M., & Ozdarici, A. (2011). Field-based crop classification using SPOT4, SPOT5, IKONOS and QuickBird imagery for agricultural areas: A comparison study. International Journal of Remote Sensing, 32(24), 9735–9768.

    Article  Google Scholar 

  • Vincent, L., & Soille, P. (1991). Watershed in digital spaces: An efficient algorithm based on immersion simulation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 583–598.

    Article  Google Scholar 

  • Wang, L., Sousa, W. P., Gong, P., & Biging, G. S. (2004). Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama. Remote Sensing of Environment, 91, 432–440.

    Article  Google Scholar 

  • Xiao, P., Feng, X., Zhao, S., & She, J. (2007). Multispectral IKONOS image segmentation based on texture marker-controlled watershed algorithm. In Y. Wang, J. Li, B. Lei, & J. Yang (Eds.), Proceedings of the SPIE international symposium on multispectral image processing and pattern recognition, November 14 (pp. 67900U-1–67900U-9).

  • Xu, S., Liu, H., & Song, E. (2011). Marker-controlled watershed for lesion segmentation in mammograms. Journal of Digital Imaging, 24(5), 754–763.

    Article  Google Scholar 

  • Yan, L., & Roy, D. P. (2014). Automated crop field extraction from multi-temporal Web Enabled Landsat Data. Remote Sensing of Environment, 144, 42–64.

    Article  Google Scholar 

  • Yan, L., & Roy, D. P. (2016). Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sensing of Environment, 172, 67–86.

    Article  Google Scholar 

  • Yan, J., Zhao, B., Wang, L., Zelenetz, A., & Schwartz, L. H. (2006). Marker-controlled watershed for lymphoma segmentation in sequential CT images. Medical Physics, 33(7), 2452–2460.

    Article  Google Scholar 

  • Yi, C., Pan, Y., & Zhang, J. (2008). An integrated approach to agricultural crop classification using SPOT HRV images. In D. Li (Ed.), Computer and computing technologies in agriculture (Vol. 1, pp. 677–684). New York: Springer.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to anonymous reviewers for valuable comments and contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Turker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turker, M., Rahimzadeganasl, A. Agricultural Field Detection from Satellite Imagery Using the Combined Otsu’s Thresholding Algorithm and Marker-Controlled Watershed-Based Transform. J Indian Soc Remote Sens 49, 1035–1050 (2021). https://doi.org/10.1007/s12524-020-01276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01276-4

Keywords

Navigation