Skip to main content

Advertisement

Log in

Land Use and Cover Change Assessment and Dynamic Spatial Modeling in the Ghara-su Basin, Northeastern Iran

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This study predicts land cover dynamics in Ghara-su Basin, northeastern Iran, using GIS modeling and landscape metrics. Land use/land cover (LULC) mapping for the years 1988, 2002, and 2008 was classified from remotely sensed imagery to monitor and predict future LULC changes. FRAGSTATS was used to quantify landscape structure by a series of landscape indices extracted from LULC data. Principal component analysis was performed on 28 landscape indexes to explore the degree of redundancy. A predicted LULC map for the year 2022 was created based on multilayer perceptron artificial neural network and the past trends of land variations. The predicted model accuracy assessment was accomplished by comparing the actual LULC map of 2008 with a predicted map for the year 2008. Results of change analysis showed a reduction of forest (12% of forest area) and bare land (20% of bare land area). Agricultural land, waterbodies, urban areas, and grassland increased about 8%, 11%, 27%, and 35%, respectively, between 1988 and 2008. Bare land and agricultural land are the main contributors to increased residential zones. Landscape metrics indicate an increase in fragmentation and diversity during the study period. The predicted map for 2022 shows that forest is becoming degraded and residential areas, agricultural lands, and grassland will increase compared with those under the 2008 land cover. The results of this study, where areas prone to change are mapped, are expected to support environmental planning and management initiatives and, in doing so, prevent further negative changes in landscape function and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abuelaish, B., & Camacho Olmedo, M. T. (2016). Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models. Arabian Journal of Geosciences,9, 274.

    Google Scholar 

  • Al-sharif, A. A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian Journal of Geosciences,7, 4291–4301.

    Google Scholar 

  • Armenteras, D., Murcia, U., González, T. M., Barón, O. J., & Arias, J. E. (2019). Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Global Ecology and Conservation,17, e00567.

    Google Scholar 

  • Ayub, G., Smith, R. A., Tissue, D. T., & Atkin, O. K. (2011). Impacts of drought on leaf respiration in darkness and light in Eucalyptus Saligna exposed to industrial-age atmospheric CO2 and growth temperature. New Phytologist,190, 1003–1018.

    Google Scholar 

  • Bakr, N., Weindorf, D. C., Bahnassy, M. H., Marei, S. M., & EL-Badawi, M. M. (2010). Monitoring land cover changes in a newly reclaimed area of Egypt using multi-temporal Landsat data. Applied Geography,30, 592–605.

    Google Scholar 

  • Beygi Heidarlou, H., Banj Shafiei, A., Erfanian, M., & Tayyebi, A. (2019). Effects of preservation policy on land use changes in Iranian Northern Zagros forests. Land Use Policy,81, 76–90.

    Google Scholar 

  • Butt, A., Shabbir, R., Ahmad, S. S., & Aziz, N. (2015). Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science,18(2), 251–259.

    Google Scholar 

  • Camacho Olmedo, M. T., Pontius, R. G., Jr., & Paegelow, M. (2015). Comparison of simulation models in terms of quantity and allocation of land change. Environmental Modelling and Software,69, 214–221.

    Google Scholar 

  • Corry, R. C., & Nassauer, J. (2005). Limitations of using landscape pattern indices to evaluate the ecological consequences of alternative plans and designs. Landscape and Urban Planning,72, 265–280.

    Google Scholar 

  • DasGupta, R., Hashimoto, S., Okuro, T., & Basu, M. (2019). Scenario-based land change modelling in the Indian Sundarban delta: An exploratory analysis of plausible alternative regional futures. Sustainability Science,14, 221–240.

    Google Scholar 

  • Deng, S., Wang, K., Hong, Y., & Qi, J. G. (2009). Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning,92, 187–198. https://doi.org/10.1016/j.landurbplan.2009.05.001.

    Article  Google Scholar 

  • Dewan, A. M., Yamaguchi, Y., & Rahman, M. Z. (2012). Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal,77(3), 315–330. https://doi.org/10.1007/s10708-010-9399-x.

    Article  Google Scholar 

  • Eastman, J. R. (2006). IDRISI Andes: Guide to GIS and image processing. Worcester, MA: Clark University.

    Google Scholar 

  • Eastman, J. R. (2009). IDRISI Taiga: Guide to GIS and image processing. Worcester, MA: Clark University.

    Google Scholar 

  • Eastman, J. R. (2012). IDRISI Selva: Guide to GIS and image processing. Worcester, MA: Clark University.

    Google Scholar 

  • Eastman, J. R., Van Fossen, M. E., & Solarzano, L. A. (2005). Transition potential modeling or land cover change. In D. Maguire, M. Goodchild, & M. M. Batty (Eds.), GIS, spatial analysis and modeling (pp. 357–386). Redlands, CA: ESRI Press.

    Google Scholar 

  • Echeverría, C., Newton, A., Nahuelhual, L., Coomes, D., & Rey-Benayase, J. M. (2012). How landscapes change: integration of spatial patterns and human processes in temperate landscapes of Southern Chile. Applied Geography,32, 822–831.

    Google Scholar 

  • Fichera, C. R., Modica, G., & Pollino, M. (2012). Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. European Journal of Remote Sensing,45(1), 1–18. https://doi.org/10.5721/EuJRS20124501.

    Article  Google Scholar 

  • Foody, G. M. (2005). Local characterization of thematic classification accuracy through spatially constrained confusion matrices. International Journal of Remote Sensing,26(6), 1217–1228.

    Google Scholar 

  • He, X., Gao, Y., Niu, J., & Zhao, Y. (2011). Landscape pattern changes under the impacts of urbanization in the Yellow River wetland taking Zhengzhou as an example. Procedia Environmental Sciences,10, 2165–2169.

    Google Scholar 

  • Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning,34(8), 1443–1458.

    Google Scholar 

  • Howard, K. W. F. (2002). Urban groundwater issues—an introduction. In K. W. F. Howard & R. G. Israfilov (Eds.), Current problems of hydrogeology in urban areas, urban agglomerates and industrial centres (pp. 1–15)., NATO Science Series I: Earth and Environmental Sciences Baku: Springer.

    Google Scholar 

  • Jaafari, S., Sakieh, Y., Alizadeh Shabani, A., Danehkar, A., & Nazarisamani, A. (2015). Landscape change assessment of reservation areas using remote sensing and landscape metrics (case study: Jajroud reservation, Iran). Environment, Development and Sustainability,18, 1701–1717.

    Google Scholar 

  • Joorabian Shooshtari, S., & Gholamalifard, M. (2015). Scenario-based land cover change modeling and its implications for landscape pattern analysis in the Neka Watershed, Iran. Remote Sensing Applications: Society and Environment,1, 1–19. https://doi.org/10.1016/j.rsase.2015.05.001.

    Article  Google Scholar 

  • Joorabian Shooshtari, S., Shayesteh, K., Gholamalifard, M., Azari, M., & López-Moreno, J. I. (2018). Land cover change modelling in Hyrcanian forests, northern Iran: A landscape pattern and transformation analysis perspective. Cuadernos de Investigación Geográfica,44(2), 743–761. https://doi.org/10.18172/cig.3279.

    Article  Google Scholar 

  • Joorabian Shooshtari, S., Shayesteh, K., Gholamalifard, M., Azari, M., Serrano-Notivoli, R., & López-Moreno, J. I. (2017). Impacts of future land cover and climate change on the water balance in northern Iran. Hydrological Sciences Journal,62(16), 2655–2673. https://doi.org/10.1080/02626667.2017.1403028.

    Article  Google Scholar 

  • Khoi, D. D., & Murayama, Y. (2010). Forecasting areas vulnerable to forest conversion in the Tam Dao National Park region, Vietnam. Remote Sensing,2(5), 1249–1272.

    Google Scholar 

  • Leitão, A. B., & Ahern, J. (2002). Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning,59(2), 65–93.

    Google Scholar 

  • Li, X., & Yeh, A. G. O. (2002). Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science,16(4), 323–343.

    Google Scholar 

  • Liu, M., Hu, Y., Chang, X. He, & Zhang, W. (2009). Land use and land cover change analysis and prediction in the upper reaches of the Minjiang River, China. Environmental Management,43(5), 899–907.

    Google Scholar 

  • Mahiny, A. S., & Gholamalifard, M. (2007). Dynamic spatial modeling of urban growth through cellular automata in a GIS Environment. International Journal of Environmental Research,1(3), 272–279.

    Google Scholar 

  • Mas, J. F., Kolb, M., Paegelow, M., Carmacho Olmedo, M. T., & Houet, T. (2014). Inductive pattern-based land use/cover change models: a comparison of four software packages. Environmental Modelling and Software,51, 94–111.

    Google Scholar 

  • McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Medley, K., Okey, B. W., Barrett, G. W., Lucas, M. F., & Renwick, W. H. (1995). Landscape change with agricultural intensification in a rural watershed, Southwestern Ohio, USA. Landscape Ecology,10(3), 161–176.

    Google Scholar 

  • Mishra, V. N., & Rai, P. K. (2016). A remote sensing aided multi-layer perceptron-Markov chain analysis for land use and land cover change prediction in Patna district (Bihar), India. Arabian Journal of Geosciences,9, 249.

    Google Scholar 

  • Munsi, M., Areendran, G., & Joshi, P. K. (2012). Modeling spatio-temporal change patterns of forest cover: a case study from the Himalayan foothills (India). Regional Environmental Change, 12, 619–632.

    Google Scholar 

  • Nevels, K. (1986). A direct solution for pairwise rotations in Kaiser’s varimax method. Psychometrika,51(2), 327–329.

    Google Scholar 

  • Oñate-Valdivieso, F., & Sendra, J. B. (2010). Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling. Journal of Hydrology,395(3–4), 256–263.

    Google Scholar 

  • Ouyang, W., Skidmore, A. K., Toxopeus, A. G., & Hao, F. (2010). Long-term vegetation landscape pattern with non-point source nutrient pollution in upper stream of Yellow River basin. Journal of Hydrology,389, 373–380.

    Google Scholar 

  • Paudel, S., & Yuan, F. (2012). Assessing landscape changes and dynamics using patch analysis and GIS modeling. International Journal of Applied Earth Observation and Geoinformation,16, 66–76.

    Google Scholar 

  • Rawat, J. S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. The Egyptian Journal of Remote Sensing and Space Sciences,18, 77–84.

    Google Scholar 

  • Romano, G., Abdelwahab, O. M. M., & Gentile, F. (2018). Modeling land use changes and their impact on sediment load in a Mediterranean watershed. CATENA,163, 342–353.

    Google Scholar 

  • Sangermano, F., Toledano, J., & Eastman, J. R. (2012). Land cover change in the Bolivian Amazon and its implications for REDD+ and endemic biodiversity. Landscape Ecology,27, 571–584.

    Google Scholar 

  • Schulp, C. J. E., Levers, C., Kuemmerle, T., Tieskens, K. F., & Verburg, P. H. (2018). Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy,80, 332–344.

    Google Scholar 

  • Seto, K. C., & Fragkias, M. (2005). Quantifying spatiotemporal patterns of urban landuse change in four cities of China with time series landscape metrics. Landscape Ecology,20(7), 871–888.

    Google Scholar 

  • Song, J., Fu, X., Wang, R., Peng, Z., & Gu, Z. (2018). Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise. Mitigation and Adaptation Strategies for Global Change,23, 703–733.

    Google Scholar 

  • Su, S., Jiang, Z., Zhang, Q., & Zhang, Y. (2011). Transformation of agricultural landscapes under rapid urbanization: a threat to sustainability in Hang-Jia-Hu region, China. Applied Geography,31(2), 439–449.

    Google Scholar 

  • Su, S., Xiao, R., Jiang, Z., & Zhang, Y. (2012). Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Applied Geography,34, 295–305.

    Google Scholar 

  • Talebi Amiri, S., Azari Dehkord, F., Sadeghi, H., & Soofbaf, R. (2009). Study on landscape degradation in Neka watershed using landscape metrics. Environmental Sciences,6(3), 133–144.

    Google Scholar 

  • Tang, J., Bu, K., Yang, J., Zhang, S. H., & Chang, L. (2012). Multitemporal analysis of forest fragmentation in the upstream region of the Nenjiang River Basin, Northeast China. Ecological Indicators,23, 597–607.

    Google Scholar 

  • Tang, J., Wang, L., & Yao, Z. (2006). Analyzing urban sprawl spatial fragmentation using multi-temporal satellite images. GIScience and Remote Sensing,43(3), 218–232.

    Google Scholar 

  • Tiné, M., Perez, L., & Molowny-Horas, R. (2019). Hybrid spatiotemporal simulation of future changes in open wetlands: A study of the Abitibi-Témiscamingue region, Québec, Canada. International Journal of Applied Earth Observation and Geoinformation,74, 302–313.

    Google Scholar 

  • Vesterby, M., & Heimlich, R. (1991). Land use and demographic change: Results from fast-growing counties. Land Economics,67(3), 279–291.

    Google Scholar 

  • Voight, C., Hernandez-Aguilar, K., Garcia, C., & Gutierrez, S. (2019). Predictive modeling of future forest cover change patterns in southern Belize. Remote Sensing,11, 823.

    Google Scholar 

  • Yeh, C., & Huang, S. (2009). Investigating spatiotemporal patterns of landscape diversity in response to urbanization. Landscape and Urban Planning,93, 151–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharif Joorabian Shooshtari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joorabian Shooshtari, S., Silva, T., Raheli Namin, B. et al. Land Use and Cover Change Assessment and Dynamic Spatial Modeling in the Ghara-su Basin, Northeastern Iran. J Indian Soc Remote Sens 48, 81–95 (2020). https://doi.org/10.1007/s12524-019-01054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-01054-x

Keywords

Navigation