Skip to main content
Log in

A Framelet-Based SFIM Method to Pan-Sharpen THEOS Imagery

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This paper proposes an improved framelet-based pan-sharpening algorithm for Thailand Earth Observation System (THEOS) imagery to decrease the effects of different acquisition times between panchromatic (Pan) and multispectral (MS) images, in which the smoothing filter-based intensity modulation (SFIM) is introduced into low-frequency information fusion instead of the conventional “mean” rule. Moreover, a two-layer procedure is presented to reduce the impacts of mixed pixels caused by the large difference of spatial resolutions between the Pan and MS images. The proposed method is tested on two THEOS datasets and compared with the Gram–Schmidt, SFIM and traditional framelet-based methods. The portability across contourlet transform is also examined. Both qualitative and quantitative evaluation results demonstrate that the proposed method is more independent of the illumination of the Pan image and can achieve better spectral fidelity while maintaining spatial sharpness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alparone, L., Wald, L., Chanussot, J., Thomas, C., Gamba, P., & Bruce, L. M. (2007). Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data-fusion contest. IEEE Transactions on Geoscience and Remote Sensing, 45(10), 3012–3021.

    Article  Google Scholar 

  • Amolins, K., Zhang, Y., & Dare, P. (2007). Wavelet based image fusion techniques—An introduction, review and comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 62(4), 249–263.

    Article  Google Scholar 

  • Baronti, S., Aiazzi, B., Selva, M., Garzelli, A., & Alparone, L. (2011). A theoretical analysis of the effects of aliasing and misregistration on pansharpened imagery. IEEE Journal of Selected Topics in Signal Processing, 5(3), 446–453.

    Article  Google Scholar 

  • Bhatnagar, G., & Wu, Q. J. (2012). An image fusion framework based on human visual system in framelet domain. International Journal of Wavelets, Multiresolution and Information Processing, 10(01), 1250002.

    Article  Google Scholar 

  • Choi, M. J., Lee, D. H., & Lim, H. S. (2008). Framelet-based multiresolution image fusion with an improved intensity-hue-saturation transform. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 1273–1280.

    Google Scholar 

  • Da Cunha, A. L., Zhou, J., & Do, M. N. (2006). The nonsubsampled contourlet transform: theory, design, and applications. IEEE Transactions on Image Processing, 15(10), 3089–3101.

    Article  Google Scholar 

  • Duran, J., Buades, A., Coll, B., Sbert, C., & Blanchet, G. (2017). A survey of pansharpening methods with a new band-decoupled variational model. ISPRS Journal of Photogrammetry and Remote Sensing, 125, 78–105.

    Article  Google Scholar 

  • González-Audícana, M., Saleta, J. L., Catalán, R. G., & García, R. (2004). Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 42(6), 1291–1299.

    Article  Google Scholar 

  • Han, B. (2013). Properties of discrete framelet transforms. Mathematical Modelling of Natural Phenomena, 8(1), 18–47.

    Article  Google Scholar 

  • Han, B. (2015). Algorithm for constructing symmetric dual framelet filter banks. Mathematics of Computation, 84(292), 767–801.

    Article  Google Scholar 

  • Han, B., & Zhao, Z. (2014). Tensor product complex tight framelets with increasing directionality. SIAM Journal on Imaging Sciences, 7(2), 997–1034.

    Article  Google Scholar 

  • Lebrun, J., & Selesnick, I. (2004). Gröbner bases and wavelet design. Journal of Symbolic Computation, 37(2), 227–259.

    Article  Google Scholar 

  • Liu, J. G. (2000). Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 21(18), 3461–3472.

    Article  Google Scholar 

  • Liu, P., Xiao, L., & Li, T. (2018). A variational pan-sharpening method based on spatial fractional-order geometry and spectral–spatial low-rank priors. IEEE Transactions on Geoscience and Remote Sensing, 56(3), 1788–1802.

    Article  Google Scholar 

  • Mallika, K., Arathi, T., Krishna Rao, G. V., & Soman, K. P. (2009). Framelet based image fusion for the enhancement of cloud associated shadow areas in satellite images. In International conference on advances in computing, control, and telecommunication technologies (pp. 507–509). IEEE.

  • Masi, G., Cozzolino, D., Verdoliva, L., & Scarpa, G. (2016). Pansharpening by convolutional neural networks. Remote Sensing, 8(7), 594.

    Article  Google Scholar 

  • Meng, X., Shen, H., Li, H., Zhang, L., & Fu, R. (2019). Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis: Practical discussion and challenges. Information Fusion, 46, 102–113.

    Article  Google Scholar 

  • Piella, G. (2003). A general framework for multiresolution image fusion: From pixels to regions. Information fusion, 4(4), 259–280.

    Article  Google Scholar 

  • Prost, G. L. (2013). Remote sensing for geoscientists: Image analysis and integration. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Selesnick, I. W. (2004). The double-density dual-tree DWT. IEEE Transactions on Signal Processing, 52(5), 1304–1314.

    Article  Google Scholar 

  • Selesnick, I. W., & Abdelnour, A. F. (2004). Symmetric wavelet tight frames with two generators. Applied and Computational Harmonic Analysis, 17(2), 211–225.

    Article  Google Scholar 

  • Shah, V. P., Younan, N. H., & King, R. L. (2008). An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1323–1335.

    Article  Google Scholar 

  • Sonobe, R., Tani, H., & Wang, X. (2014). Detection of ambrosia beetles using a pan-sharpened image generated from AALOS/AVNIR-2 and ALOS/PRISM imagery. Forest Systems, 23(1), 178–182.

    Article  Google Scholar 

  • Thomas, C., Ranchin, T., Wald, L., & Chanussot, J. (2008). Synthesis of multispectral images to high spatial resolution: A critical review of fusion methods based on remote sensing physics. IEEE Transactions on Geoscience and Remote Sensing, 46(5), 1301–1312.

    Article  Google Scholar 

  • Vivone, G., Alparone, L., Chanussot, J., Mura, M. D., Garzelli, A., Licciardi, G. A., et al. (2015). A critical comparison among pan sharpening algorithms. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2565–2586.

    Article  Google Scholar 

  • Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Article  Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Wei, Y., Yuan, Q., Shen, H., & Zhang, L. (2017). Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geoscience and Remote Sensing Letters, 14(10), 1795–1799.

    Article  Google Scholar 

  • Woodcock, C. E., & Ozdogan, M. (2012). Trends in land cover mapping and monitoring. In G. Gutman, A. C. Janetos, C. O. Justice, E. F. Moran, J. F. Mustard, R. R. Rindfuss, D. Skole, B. L. TurnerII, M. A. Cochrane (Eds.), Land change science (pp. 367–377). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Wu, B., Fu, Q., Sun, L., & Wang, X. (2015). Enhanced hyperspherical color space fusion technique preserving spectral and spatial content. Journal of Applied Remote Sensing, 9(1), 097291.

    Article  Google Scholar 

  • Xing, Y., Wang, M., Yang, S., & Jiao, L. (2018). Pan-sharpening via deep metric learning. ISPRS Journal of Photogrammetry and Remote Sensing, 145, 165–183.

    Article  Google Scholar 

  • Xu, Q., Zhang, Y., & Li, B. (2014). Recent advances in pansharpening and key problems in applications. International Journal of Image and Data Fusion, 5(3), 175–195.

    Article  Google Scholar 

  • Xydeas, C. A., & Petrovic, V. (2000). Objective image fusion performance measure. Electronics Letters, 36(4), 308–309.

    Article  Google Scholar 

  • Zhang, J. (2010). Multi-source remote sensing data fusion: Status and trends. International Journal of Image and Data Fusion, 1(1), 5–24.

    Article  Google Scholar 

  • Zheng, H., Zheng, D., Hu, Y., & Li, S. (2010). Study on the optimal parameters of image fusion based on wavelet transform. Journal of Computational Information Systems, 6(1), 131–137.

    Google Scholar 

Download references

Acknowledgments

Funding was provided by the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS050), and the National Natural Science Foundation of China (Grant Nos. 41571330, 41601453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Wu, B. A Framelet-Based SFIM Method to Pan-Sharpen THEOS Imagery. J Indian Soc Remote Sens 47, 1417–1429 (2019). https://doi.org/10.1007/s12524-019-01006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-01006-5

Keywords

Navigation