Skip to main content
Log in

Modeling the Global Solar Radiation Under Cloudy Sky Using Meteosat Second Generation High Resolution Visible Raw Data

  • Cover Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

This paper presents an improved model for mapping both hourly and daily values of the global radiation reaching the earth’s surface from satellite data over Algeria. An empirical model with a large spectral band using Linke atmospheric turbidity was chosen to modeling the clear-sky global radiation. The extinction of the solar radiation (absorption plus scattering) is described by an exponential decay function of the cloud albedo and cloud index. To compute these two parameter, we resolve the sun-pixel-satellite radiative model equation using the following hypothesizes. The first one supposes the total transmittance of the atmospheric in the pixel-satellite direction as the ratio of the direct radiation in real sky to the same quantity in case of a very clean sky. The second one estimates that the noise energy reflected back towards the radiometer by molecules of gases in the upper levels of the atmosphere represents about 5 % of the energy measured by the radiometer. The model performance was validated for five radiometric stations across the country for three selected months in 2013 and satisfactory results were obtained and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso, R., Abal, G., Siri, R., & Muse, P. (2011). Global solar irradiation assessment in Uruguay using Tarpley’s model and GOES satellite images. In Annals of the Solar World Congress (SWC 2011), Kassel, Germany.

  • Badescu, V. (2008). Modelling solar radiation at the earth surface, recent advances. ISBN: 978-3-540-77454-9, Viorel Ed.

  • Cano, D., Monget, J. M., Albuisson, M., Guillard, H., Regas, N., & Wald, L. (1986). A method for the determination of the global solar radiation from meteorological satellite data. Solar Energy, 37(1), 31–39.

    Article  Google Scholar 

  • Dedieu, G., Deschamps, P. Y., Kerr, Y. H., Raberanto, P., & Arino, O. (1988). Satellite estimation of Solar irradiance at the surface of the earth and of surface albedo., 1st WCRP/SRB Satellite algorithm intercomparison workshop, Hampton, Virginia, USA.

  • Espinar, B., Ramirez, L., Drews, A., Beyer, H. G., Zarzalejo, L., Polo, J., & Martín, L. (2009). Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations. Solar Energy, 83, 118–125.

    Article  Google Scholar 

  • Gautier, C., Diak, G., & Masse, S. (1980). A simple physical model to estimate incident solar radiationat the surface from Goes satellite data. Journal of Applied Meteorology, 19, 1005–1012.

    Article  Google Scholar 

  • Hammer, A., Heinemann, D., Hoyer, C. (2001). E_ect of Meteosat VIS sensor properties on cloud reectivity Third SoDa meeting report Bern (1/2001).

  • Janjai, S., Pankaew, P., Laksanaboosong, J., & Kitichantaropas, P. (2011). Estimation of solar radiation over Cambodia from long-term satellite data. Renewable Energy, 36, e1214–e1220.

    Article  Google Scholar 

  • Laine, V., Venäläinen, A., Heikinheimo, M., & Hyvärinen, O. (1999). Estimation of surface solar global radiation from NOAAAVHRR data in high latitudes. Journal of Applied Meteorology, 38, 1706–1719.

    Article  Google Scholar 

  • Lefèvre, M., Diabat, L., & Wald, L. (2007). Using reduced data sets ISCCP-B2 fromthe Meteosat satellites to assess surface solar irradiance. Solar Energy, 81, 240–253.

    Article  Google Scholar 

  • Nunez, M. (1987). A satellite-based solar energy monitoring system for Tasmania, Australia. Solar Energy, 39, 439–444.

    Article  Google Scholar 

  • Pereira, A. B., Villa Nova, N. A., & Galvani, E. (2003). Estimation of global solar radiation flux density in Brazil from a single measurement at solar noon. Biosystems Engineering 86:27–34. http://www.sciencedirect.com.

  • Pielke, R. A. (1984). Mesoscale meteorological modeling (p. 612). New York, NY: Academic Press.

    Google Scholar 

  • Posselt, R., Müller, R., Trentmann, J., & Stöckli, R. (2010). Surface radiation climatology derived from Meteosat First and Second Generation satellites. Geophysical Research Abstracts, 12, 9454.

    Google Scholar 

  • Rafiqul, I. M. D., & Exell, H. B. (1996). Solar radiation mapping from satellite image using a low cost system. Solar Energy, 56, 225–237.

    Article  Google Scholar 

  • Raschke, E., Gratzki, A., & Rielend, M. (1987). Estimates of global radiation at the ground from thereduce data sets of the international satellite cloud climatology project. Journal of Climate, 7, 205–213.

    Article  Google Scholar 

  • Rieland, M., & Stuhlmann, R. (1993). Toward the influence of clouds on the shortwave radiation budget of the earth-atmosphere system estimated from satellite data. Journal of Applied Meteorology, 32, 825–843.

    Article  Google Scholar 

  • Rigollier, C., Lefevre, M., & Wald, L. (2004). The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Solar Energy, 77, 159–169.

  • Schmetz, J. (1989). Towards a surface radiation climatology: Retrieval of down-ward irradiances from satellites. Atmospheric Research, 23, 287–321.

    Article  Google Scholar 

  • Tarpley, J. D. (1979). Estimating incident solar radiation at the surface from geostationary satellite data. Journal of Applied Meteorology, 18, 1172–1181.

    Article  Google Scholar 

  • Tovar, H. F., & Baldasano, J. M. (2001). Solar radiation mapping from NOAA AVHRR data in Catalonia, Spain. Journal of Applied Meteorology, 40, 1821–1834.

    Article  Google Scholar 

  • Word Meteorlogical Organization (WMO). (1981). Meteorological aspects of the utilization of solar radiation as an energy source. Annex: World maps of relative global radiation Technical Note No. 172 WMO-No. 557, Genova Switzerland, pp. 298.

  • Zarzalejo, L. F., Ramirez, L., & Polo, J. (2005). Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index. Energy, 30, 1685–1697.

    Article  Google Scholar 

  • Zelenka, A. (2003). Progress in estimating insolation over snow covered mountains with Meteosat VIS-channel: A time series approach. In Proceedings of the 3rd workshop on satellites for solar energy, March 19–21, 2003. University of Geneva, Switzerland.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Razagui.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razagui, A., Bachari, N.I., Bouchouicha, K. et al. Modeling the Global Solar Radiation Under Cloudy Sky Using Meteosat Second Generation High Resolution Visible Raw Data. J Indian Soc Remote Sens 45, 725–732 (2017). https://doi.org/10.1007/s12524-016-0628-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-016-0628-8

Keywords

Navigation