Skip to main content
Log in

Estimation of Aboveground Phytomass of Plantations Using Digital Photogrammetry and High Resolution Remote Sensing Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

The study follows an approach to estimate phytomass using recent techniques of remote sensing and digital photogrammetry. It involved tree inventory of forest plantations in Bhakra forest range of Nainital district. Panchromatic stereo dataset of Cartosat-1 was evaluated for mean stand height retrieval. Texture analysis and tree-tops detection analyses were done on Quick-Bird PAN data. The composite texture image of mean, variance and contrast with a 5×5 pixel window was found best to separate tree crowns for assessment of crown areas. Tree tops count obtained by local maxima filtering was found to be 83.4 % efficient with an RMSE ± 13 for 35 sample plots. The predicted phytomass ranged from 27.01 to 35.08 t/ha in the case of Eucalyptus sp. while in the case of Tectona grandis from 26.52 to 156 t/ha. The correlation between observed and predicted phytomass in Eucalyptus sp. was 0.468 with an RMSE of 5.12. However, the phytomass predicted in Tectona grandis was fairly strong with R2 = 0.65 and RMSE of 9.89 as there was no undergrowth and the crowns were clearly visible. Results of the study show the potential of Cartosat-1 derived DSM and Quick-Bird texture image for the estimation of stand height, stem diameter, tree count and phytomass of important timber species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asner, G. P., Palace, M., Keller, M., Pereira, R., Silva, J. N. M., & Clark, D. A. (2002). Estimating canopy structure in an Amazon forest from laser range finder and IKONOS satellite observations. Biotropica, 34, 483–492.

    Article  Google Scholar 

  • Bartelink, H. H. (1996). Allometric relationships on biomass and needle area of Douglas-fir. Forest Ecology and Management, 1–3, 193–203.

    Article  Google Scholar 

  • Brack, C. (1999). Tree crown: Forest measurement and Modelling. (http://fennerschool-associated.anu.edu.au/mensuration.crown.htm).

  • Brandtberg, T. (1999). Automatic individual tree-based analysis of high spatial resolution remotely sensed data. Acta universitatis agriculturae Sueciae, Silvestria,118.

  • Chacko, V. J. (1965). A manual on sampling technique for forest surveys. Forests and Forestry

  • Chaturvedi, O. P., & Singh, J. S. (1987). The structure and function of Pine forest in central Himalaya. Indian dry matter dynamics. Annals of Botany, 60, 237–252.

    Google Scholar 

  • Clark, D. B., Castro, C. S., Alvarado, L. D. A., & Read, J. M. (2004a). Quantifying mortality of tropical rain forest trees using high-spatial-resolution satellite data. Ecology Letters, 7, 52–59.

    Article  Google Scholar 

  • Clark, D. B., Read, J. M., Clark, M. L., Cruze, A. M., Dotti, M. F., & Clark, D. A. (2004b). Application of 1-M and 4-M resolution satellite data to ecological studies of tropical rain forests. Ecological Applications, 14, 61–74.

    Article  Google Scholar 

  • Cohen, W., Spies, T., & Bradshaw, G. (1990). Semi-variograms of digital imagery for analysis of conifer canopy structure. Remote Sensing Environment, 35, 167–178.

    Article  Google Scholar 

  • Devagiri, G. M., Money, S., Singh, S., Dadhawal, V. K., Patil, P., Khaple, A. K., Devakumar, A. S., & Hubballi, S. (2013). Above ground biomass and carbon pool assessment in Karnataka, India using spectral modeling. Tropical Ecology, 54(2), 145–165.

    Google Scholar 

  • Dralle, K., & Rudemo, M. (1997). Stem number estimation by kernal smoothing aerial photos. Canadian Journal of Forest Research, 26, 1228–1236.

    Article  Google Scholar 

  • Ferdinent, J. J., & Padmanaban, R. C. (2013). Development of a methodology to estimate biomass from tree height using airborne digital image. International Journal of Advanced Remote Sensing and, GIS, 2(1), 49–58.

    Google Scholar 

  • Foody, G. M. (2003). Remote Sensing of tropical forest environments: towards the monitoring of environmental resources for sustainable development. International Journal of Remote Sensing, 24(20), 4035–4046.

    Article  Google Scholar 

  • Franklin, S. E., Hall, R. J., Moskal, L. M., Maudie, A. J., & Lavigne, M. B. (2000). Incorporating texture into classification of forest species composition from airborne multispectral images. International Journal of Remote Sensing, 21, 61–79.

    Article  Google Scholar 

  • Franklin, S. E., Wulder, M. A., & Gerylo, G. R. (2001). Texture analysis of IKONOS panchromatic data for Douglas-fir forest age class separability in British Columbia. International Journal of Remote Sensing, 22(13), 2627–2632.

    Article  Google Scholar 

  • FSI. (1996). Volume equations for forests of India. Forest Survey of India, Ministry of Environment and Forests, Dehradun: Nepal and Bhutan.

    Google Scholar 

  • Gibreslasie, M. T., Ahmed, F. B., Van Aardt, J. A. N., & Blakeway, F. (2009). Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged Eucalyptus plantation forests. International Journal of Remote Sensing, 32(15), 4141–4154.

    Article  Google Scholar 

  • Gilmore, D. W. (2001). Equations to describe crown allometry of Larix require local validation. Forest Ecology and Management, 148(1–3), 109–116.

    Article  Google Scholar 

  • Gougeon, F. (1995). A crown following approach to the automatic delineation of individual tree crown in high spatial resolution aerial images. Canadian Journal of Remote Sensing, 21, 274–284.

    Article  Google Scholar 

  • Green, K. (2000). Selecting and interpreting high-resolution images. Journal of Forestry, 98, 37–39.

    Google Scholar 

  • Greenberg, J. A., Dobrowski, S. L., & Ustin, S. L. (2005). Shadow allometry: estimating tree structural parameters using hyperspatial image analysis. Remote Sensing of Environment, 97, 15–25.

    Article  Google Scholar 

  • Haralick, R., & Shapiro, L. (1985). Image segmentation techniques. Computer Vision, Graphics, and Image Processing, 29, 100–132.

    Article  Google Scholar 

  • Hurtt, G., Xiao, X. M., Keller, M., Palace, M., Asner, G. P., Braswell, R., Brondizio, E. S., Cardoso, M., Carlvaho, C. J. R., Fearon, M. G., Guild, L., Hagen, S., Hetrick, S., Moore, B., Nobre, C., Read, J. M., Sa, T., Schloss, A., Vourlitis, G., & Wickel, A. J. (2003). IKONOS imagery for the large scale biosphere–atmosphere experiment in Amazonia (LBA). Remote Sensing of Environment, 88, 111–127.

    Article  Google Scholar 

  • Jacobsen, K., Crespi, M., Fratarcangeli,F.& Giannone, F. (2008). DEM generation with Cartosat-1 stereo imagery. EARSeL Joint Workshop Remote Sensing, New Challenges of High Resolution, Bochum

  • Jensen, J. R. (1996). Introductory digital image processing: a remote sensing perspective (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Kale, M. P., Singh, S., & Roy, P. S. (2002). Biomass and productivity estimation using aerospace data and geographic Information system. Tropical Ecology, 43(1), 123–136. fig. 1–8.

    Google Scholar 

  • Kale, M. P., Singh, S., Roy, P. S., & Ravan, S. A. (2009). Patterns of carbon sequestration in forests of western Ghats and study of applicability of remote sensing in generating carbon credits through. Journal of Indian Society of Remote Sensing, 37(3), 457–471.

    Article  Google Scholar 

  • Karak, S., Marangoz, A. M. Buyuksalih, G. (2004) Analysis of segmentation parameters in eCognition software using high resolution Quick-Bird MS imagery. (http://www.isprs.org/proceedings/XXXVI/1-W41/makaleler/Karakis_Segmentation_Parameters.pdf).

  • Kimothi, M. M., Mohan, S., Singh, R. B., Soni, P., Vashistha, H. B., & Ajai. (2009). Estimation of forest biophysical variables from Indian earth observation satellite cartosat-1 stereo data. International Journal of Remote Sensing, 30, 451–461.

    Article  Google Scholar 

  • Kohl, M. (1993). Forest inventory. Tropical Forestry Handbook,243–332

  • Kumar, R., Gupta, S. R., Singh, S., Patil, P., & Dadhwal, V. K. (2011). Spatial distribution of forest biomass using remote sensing and regression models in northern Haryana, India. International Journal of Ecology Environmental Sciences, 37(1-2), 37–47.

    Google Scholar 

  • Luther, J. E., Fournier, R. A., Piercey, D. E., Guindon, L., & Hall, R. J. (2006). Biomass mapping using forest type and structure derived from Landsat TM imagery. International Journal of Applied Earth Observation and Geoinformation, 8, 173–187.

    Article  Google Scholar 

  • Nino, N., Muramatsu, K., Daigo, M. & Soyamac, N,. (2010). A Study on estimation of trees height in Japanese Cedar and Japanese cypress using ALOS/PRISM satellite sensor. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII, Part 8, Kyoto Japan, 908–911.

  • Novotony, J., Hanus, J., Lukes, P. & Kaplan, V. (2011). Individual tree crowns delineation using Local Maxima approach and seeded region growing technique. GIS, Ostrava, 23–26

  • Patil, P., Singh, S., & Dadhwal, V. K. (2012). Above ground forest Phytomass assessment in southern Gujarat in. Journal of Indian Society of Remote Sensin, 40(1), 37–46.

    Article  Google Scholar 

  • Pitkanen, J. (2001). Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods. Canadian Journal of Forest Research, 31, 832–844.

    Article  Google Scholar 

  • Pouliot, D. D., King, D. J., Bell, F. W., & Pitt, D. G. (2002). Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sensing of Environment, 82, 322–334.

    Article  Google Scholar 

  • Read, J. M., Clark, D. B., Venticinque, E. M., & Moreira, M. P. (2003). Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. Journal of Applied Ecology, 40, 592–600.

    Article  Google Scholar 

  • Roy, P. S., & Ravan, S. A. (1996). Biomass estimation using satellite remote sensing and data and investigation on possible approaches for natural forest. Journal of Bioscience, 21, 535–561.

    Article  Google Scholar 

  • Singh, S., Patil, P., Dadhwal, V. K., Banday, J. R., & Pant, D. N. (2012). Assessment of above ground Phytomass in temperate forests of Kashmir Valley, J&K, India. International Journal of Ecology and Environmental Sciences, 38(2-3), 47–58. 2012.

    Google Scholar 

  • Singh, S. P., Singh, S., Kumar, S., & Hussin, Y. (2013). Under-storey vegetation carbon characterization of Shorea Robusta (Sal) forests In The Part of Doon valley Dehradun, India using ground data and geospatial techniques. Indian Forester, 139(7), 576–584.

    Google Scholar 

  • Snehmani, Singh, M. K., Gupta, R. D., & Ganju, A. (2013). Extraction of high resolution DEM from Cartosat-1stereo imagery using rational math model and its accuracy assessment for a part of snow covered NW-Himalaya. Journal of Remote Sensing & GIS, 4(2), 2230–7990.

    Google Scholar 

  • Stellingwerf, D. A., & Hussin, Y. A. (1997). Measurements and estimations of forest stand parameters using remote sensing. Utrecht: VSP.

    Google Scholar 

  • St-Onge, B. A., & Cavayas, F. (1995). Estimating forest stand structure from high resolution imagery using the directional variogram. International Journal of Remote Sensing, 16, 1999–2021.

    Article  Google Scholar 

  • St-Onge, B. A., & Cavayas, F. (1997). Automated forest structure from high resolution imagery based on directional semi-variogram estimates. Remote Sensing of Environment, 61, 82–95.

    Article  Google Scholar 

  • Tomppo, E., Nilsson, M., Rosengrenc, M., Aaltod, P., & Kennedye, P. (2002). Simultaneous use of Landsat-TM and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass. Remote Sensing of Environment, 82(1), 156–171.

    Article  Google Scholar 

  • Wulder, M. A., Niemann, O., & Goodenough, D. (2000). Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sensing of Environment, 73, 103–114.

    Article  Google Scholar 

  • Wulder, M. A., Niemann, K. O., & Goodenough, D. G. (2002). Error reduction methods forlocal maximum filtering of high spatial resolution imagery for locating trees. Canadian Journal of Remote Sensing, 28, 621–628.

    Article  Google Scholar 

  • Wulder, M. A., & White, J. C. (2004). Comparison of airborne and satellite high spatial resolution data for the identification of individual trees with local maxima filtering. International Journal of Remote Sensing, 25, 2225–2232.

    Article  Google Scholar 

  • Zhang, Y. (2001). Texture-integrated classification of urban treed areas in high-resolution colour-infrared imagery. Photogrammetric Engineering and Remote Sensing, 67, 1359–1367.

    Google Scholar 

Download references

Acknowledgments

This study was supported by Indian Institute of Remote Sensing as part of National Carbon Project under ISRO Geosphere Biosphere Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Upgupta.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upgupta, S., Singh, S. & Tiwari, P.S. Estimation of Aboveground Phytomass of Plantations Using Digital Photogrammetry and High Resolution Remote Sensing Data. J Indian Soc Remote Sens 43, 311–323 (2015). https://doi.org/10.1007/s12524-014-0401-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-014-0401-9

Keywords

Navigation