Skip to main content
Log in

Quantitative estimate of the damages from human activities at the Apurlec Monumental Archaeological Complex (7th–14th century AD, Peru) from multitemporal photogrammetry

  • Brief Report
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Archaeological sites may be exposed to different types of risks related to wars, natural phenomena, and illicit human activities. Quantitative data on the type and extent of the damages and destructions suffered by these sites are of primary importance for their reparation and the planning of conservation and defence actions. The Apurlec Monumental Archaeological Complex (about seventh–fourteenth century AD, Peru, “Intangible and Essential Heritage” of the Peruvian Ministry of Culture) includes platforms, canals, and rectangular ceremonial/administrative enclosures. Between June and August 2021, Apurlec has been affected by a partial destruction of its southern sector. Here we present the results of two UAV photogrammetric surveys conducted before (23 January 2021) and after (30 August 2021) the destructive event. The comparison of the orthoimages and the Digital Surface Models obtained form the two surveys allow us to detect illicit activities as earth removal to collect construction material, creation of cultivable areas, and steal manufacts from archeological excavations. We calculate that the area covered by the destruction is 121,665 m2 (perimeter of about 2 km2) the removed material amount to 401,513.5 m3, a value corresponding to a mass of about 702,648.63 ton. The post-destruction topography is lower of about 3.3 m with respect to the original one. Our anytical and metholodological approach could be extended to other archeological sites potentially exposed to anthropic and natural hazards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ablanedo ES, Chandler J, Rodríguez-Pérez JR, Ordóñez C (2018) Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sensing 10:1606. https://doi.org/10.3390/rs10101606

    Article  Google Scholar 

  • Argyrou A, Agapiou A (2022) A review of artificial intelligence and remote sensing for archaeological research. Remote Sensing 14(23):6000. https://doi.org/10.3390/rs14236000

    Article  Google Scholar 

  • Bawaya M (2015) Experts struggle to confirm archaeological damage in Iraq. Nature. https://doi.org/10.1038/nature.2015.17155

    Article  Google Scholar 

  • Bettineschi C, Magnini L, Azzalin G, De Guio A (2022) Clearence cairnfields forever: combining AI and LiDAR data in the Marcesina upland (northern Italy). Eur J Post-Clas Archaeol 12:49–68

    Google Scholar 

  • Bonali FL, Tibaldi A, Marchese F, Fallati L, Russo E, Corselli C, Savini A (2019) UAV-based surveying in volcano-tectonics: an example from the Iceland rift. J Struct Geol 121:46–64

    Article  Google Scholar 

  • Brüning E (1922) Estudios Monográficos del Departamento de Lambayeque. Dionisio Mendoza Lib. Y Casa Editora, Chiclayo, pp 7–39

  • Brusasco P (2016) The Assyrian sculptures in the mosul cultural museum: a preliminary assessment of what was on display before Islamic state’s attack. Journal near Eastern Studies 75:205–248

    Article  Google Scholar 

  • Cieza de León P (1553) Chrónica del Perú. Martín de Montesdoca Sevilla, Spain. https://fuenteshistoricasdelperu.com/2023/04/07/cronica-del-peru-por-pedro-cieza-de-leon-sevilla-1553/

  • Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Böhner J (2015) System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci Model Dev 8:1991–2007

    Article  Google Scholar 

  • Contreras DA, Brodie N (2010) The utility of publicly-available satellite imagery for investigating looting of archaeological sites in Jordan. J Field Archaeol 35:101–114

    Article  Google Scholar 

  • Cunliffe E (2014) Archaeological site damage in the cycle of war and peace: a syrian case study. J East Mediterr Archaeol Herit Stud 2:229–247

    Google Scholar 

  • Darvill TC, Wainwright G (1994) The monuments at risk survey: an introduction. Antiquity 68:820–824

    Article  Google Scholar 

  • Dominguez N (2013) Researchers lament destruction of ancient Peruvian pyramid. Nature. https://doi.org/10.1038/nature.2013.13359

    Article  Google Scholar 

  • El Hajj H (2021) Interferometric SAR and machine learning: using open source data to detect archaeological looting and destruction. J Comput Appl Archaeol 4(1):47–62. https://doi.org/10.5334/jcaa.70

    Article  Google Scholar 

  • Evans DH, Fletcher RJ, Pottier C, Chevance JB, Soutif D, Tan BS, Im S, Ea D, Tin T, Kim S, Cromarty C, De Greef S, Hanus K, Bâty P, Kuszinger R, Shimoda I, Boornazian G (2013) Uncovering archaeological landscapes at Angkor using lidar. Proc Natl Acad Sci 110:12595–12600

    Article  Google Scholar 

  • Fisher CT, Cohen AS, Fernández-Diaz JC, Leisz SJ (2017) The application of airborne mapping LiDAR for the documentation of ancient cities and regions in tropical regions. Quateranry Internation 448:129–138

    Google Scholar 

  • Garrison TG, Houston S, Alcover Firpi O (2019) Recentering the rural: Lidar and articulated landscapes among the Maya. J Anthropol Archaeol 53:133–146

    Article  Google Scholar 

  • Glausiusz J (2020) Hundreds of Israel’s archaeological sites are vanishing under concrete. Nature 582(7813):474–477

    Article  Google Scholar 

  • Hugenholtz CH, Whitehead K, Brown OW, Barchyn TW, Moorman B, Clair AL, Riddell K, Hamilton T (2013) Geomorphological mapping with a small unmanned aircraft system (sUAS): feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology 194:16–24

    Article  Google Scholar 

  • Inomata T, Triadan D, Pinzón F, Burham M, Ranchos JL, Aoyama K, Haraguchi T (2018) Archaeological application of airborne LiDAR to examine social changes in the Ceibal region of the Maya lowlands. PLoS ONE 13:e0191619

    Article  Google Scholar 

  • Kauffman Doig F (1964) La cultura Chimu, en Las grandes civilizaciones del antiguo Perú. Ohne Verlagsangabe, Versandantiquariat Klaus Stellrecht, Obersulm Germany, pp 141

  • Kincey M, Gerrard C, Warburton J (2017) Quantifying erosion of ‘at risk’ archaeological sites using repeat terrestrial laser scanning. J Archaeol Sci Rep 12:405–424

    Google Scholar 

  • Kintigh KW, Altschul JH, Beaudry MC, Drennan RD, Kinzig AP, Kohler TA (2014) Grand challenges for archaeology. Proc Natl Acad Sci 111:879–880

    Article  Google Scholar 

  • Kosok P (1965) Life, Land and Water in Ancient Peru: an account of the discovery, exploration and mapping of ancient pyramids, canals, roads, towns, and fortresses of coastal Peru with observations of various aspects of Peruvian life, both ancient and modern. Long Island University Press, New York

    Google Scholar 

  • Kosok P (1941) The role of irrigation in ancient Peru. In: Eighth American Scientific Congress Proceedings, Vol. II, Anthropological Sciences, 169–178, Department of State, Washington, D. C.

  • Kosok P (1958) Lima: El Valle de Lambayeque. In: In Segundo Congreso Nacional de Historia del Peru vol 1. Adas y Trabajos, Lima, Peru, pp 49–67

  • Kosok P (1959) El valle de Lambayeque. In: Congreso Nacional de Historia del Perú, Centro de Estudios Históricos-Militares del Perú, Lima, Perú

  • Lambers K, Verschoof-van der Vaart WB, Bourgeois QPJ (2019) Integrating remote sensing, machine learning, and citizen science in Dutch archaeological prospection. Remote Sensing 11:794. https://doi.org/10.3390/rs11070794

    Article  Google Scholar 

  • Lucieer A, Jong SM, Turner D (2014) Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Prog Phys Geogr 38:97–116

    Article  Google Scholar 

  • Lumbreras LG (1974a) Los orígenes de la civilización en el Perú. Segunda edición. Milla Batres. Imp., Lima

  • Lumbreras LG (1974b) The Peoples and Cultures of Ancient Peru. Smithsonian Institution Press, Washington, DC, pp 248

  • Lumbreras LG (1981) Arqueología de la América Andina. Milla Batres Imp., Lima, Peru. https://fundacion-rama.com/wp-content/uploads/2022/07/804.-Arqueologia-de-la-America-Andina-%E2%80%93-Lumbreras.pdf

  • Luo L, Wang X, Guo H, Lasaponara R, Zong X, Masini N, Wang W, Shi P, Khatteli H, Chen F, Tariq S, Shao J, Bachagha N, Yang R, Yao Y (2019) Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: a review of the century (1907–2017). Remote Sens Environ 232:111280. https://doi.org/10.1016/j.rse.2019.111280

    Article  Google Scholar 

  • Magnini L, Bettineschi C (2019) Theory and practice for an object-based approach in archaeological remote sensing. J Archaeol Sci 107:10–22. https://doi.org/10.1016/j.jas.2019.04.005

    Article  Google Scholar 

  • Masini N, Lasaponara R (2021) Remote and close range sensing for the automatic identification and characterization of archaeological looting. The Case of Peru. J Comput Appl Archaeol 4(1):126–144. https://doi.org/10.5334/jcaa.73

    Article  Google Scholar 

  • Nex F, Remondino F (2014) UAV for 3D mapping application. A Review. Appl Geomat 6:1–15

    Article  Google Scholar 

  • Pannaccione Apa MI, Santovito MR, Pica G, Catapano I, Fornaro G, Lanari R, Soldovieri F, Wester La Torre C, Fernandez M, Marco A, Longo F, Facchinetti C, Formaro R (2016) Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù. EGU General Assembly 2016, Wien: EPSC2016–18166

  • Risbøl OL, Gustavsen L (2018) LiDAR from drones employed for mapping archaeology - potential, benefits and challenges. Archaeol Prospect 25:329–338

    Article  Google Scholar 

  • Risbøl O, Briese C, Doneus M, Nesbakken A (2015) Monitoring cultural heritage by comparing DEMs derived from historical aerial photographs and airborne laser scanning. J Cult Herit 16:202–209

    Article  Google Scholar 

  • Rodríguez-Morata C, Díaz HF, Ballesteros-Canovas JA, Rohrer M, Stoffel M (2019) The anomalous 2017 coastal El Niño event in Peru. Clim Dyn 52:5605–5622

    Article  Google Scholar 

  • Shimada I (1982) Horizontal archipelago and coast-highland interaction in north Peru: archaeological models. Senri Ethnol Stud 10:137–210

    Google Scholar 

  • Shimada I (1985) La Cultura Sicán: Una caracterización arqueológica. In: Presencia Histórica de Lambayeque, E. Mendoza (editor), Deza, Lima: 76–133

  • Tapete D, Traviglia A, Delpozzo E, Cigna F (2021) Regional-scale systematic mapping of archaeological mounds and detection of looting using COSMO-SkyMed high resolution DEM and satellite imagery. Remote Sens 13(16):3106. https://doi.org/10.3390/rs13163106

    Article  Google Scholar 

  • Trier ØD, Reksten JH, Løseth K (2021) Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN. Int J Appl Earth Obs Geoinf 95:102241

    Google Scholar 

  • Trimborn H (1979) El reino de Lambayeque en el antiguo Perú. Academia Verlag, Baden-Baden, Germany, pp 89

  • United Nations (2015) Transforming Our World: The 2030 Agenda for Sustainable Development. United Nations, Department of Economic and Social Affairs. https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981. Accessed 15 Jun 2023

  • Vásquez I (2010) Monitoreo de la resistencia mecánica y características físicas en adobes arqueológicos de distinto tipo de suelo. Proyecto Arqueológico Huaca de la Luna: Informe Técnico, Facultad de Ciencias Sociales, Universidad Nacional de la Libertad, Trujillo, Peru

  • Xiao W, Mills J, Guidi G, Rodríguez-Gonzálvez P, Gonizzi Barsanti S, González-Aguilera D (2018) Geoinformatics for the conservation and promotion of cultural heritage in support of the UN Sustainable Development Goals. ISPRS J Photogramm Remote Sens 142:389–406

    Article  Google Scholar 

Download references

Acknowledgements

This work has been carried out thanks to the infrastructures of Istituto Nazionale di Geofisica e Vulcanologia (Italy) and Museo Arqueológico Nacional Brüning (Peru) Data presented in this study are under embargo until the end of the legal actions promoted by the authorities of Peru against the authors of the AC destruction. We thank the anonymous reviewers for the constructive comments.

Funding

This study is funded by the “HUACAS” project of the Italian Ministry of Foreign Affairs to INGV and by Museo Arqueológico Nacional Brüning, Lambayeque, Peru.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Data acquisition has been carried out by RFGC and CEWLT. The data analysis and elaboration have been performed by GV, LM, and FR. The historical backgorund has been provided by MIPA and JCM. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guido Ventura.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6342 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apa, M.I.P., La Torre, C.E.W., Cachay, R.F.G. et al. Quantitative estimate of the damages from human activities at the Apurlec Monumental Archaeological Complex (7th–14th century AD, Peru) from multitemporal photogrammetry. Archaeol Anthropol Sci 15, 110 (2023). https://doi.org/10.1007/s12520-023-01818-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-023-01818-0

Keywords

Navigation