Skip to main content
Log in

Ceramic technology: how to recognize clay processing

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The issue of clay processing concerns both provenance and techno-functional ceramic investigations. In the former, the compositional/textural modification of clay alters the petrofacies expressed by the ceramic body and causes a change from the raw material in terms of bulk chemical and mineralogical composition and petrographical features as well. In the latter, identifying the signs of clay processing will provide information on the steps of the chaîne opératoire and on the technological choices made to adjust paste plasticity and to avoid failures in the following stages of manufacture. Several examples of clay processing were considered, encompassing deliberate addition of natural and artificial temper and clay mixing, other than fractioning and homogenisation to prepare the forming stage. The expected effects of mineral, vegetal and animal tempers on the paste and on the fired body were outlined. Finally, some analytical guidelines are provided to identify clay processing, using the most common analytical methods. Optical microscopy and electron microscopy provide the main contribution to identifying most of the processing practices on the clay, whereas bulk methods provide indirect evidence that may alone be insufficient to prove the occurrence of a specific transformation, as well as to detect homogenisation features. However, only a careful and multidisciplinary investigation of the ceramic body will help reveal the actions of the chaîne opératoire and to test archaeological models in a sound bottom-up perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

Data sharing is not applicable to this review article as no new data were created or analysed in this study.

References

  • Abbink AA (1999) Make it and break it: the cycles of pottery. A study of the technology, form, function and use of pottery from the settlements at Uitgeest-Groot Dorregeest and Schagen-muggenburg. PhD, Leiden University. Leiden, Nederlands

  • Allegretta I, Eramo G, Pinto D, Hein A (2017) The effect of mineralogy, microstructure and firing temperature on the effective thermal conductivity of traditional hot processing ceramics. Appl Clay Sci 135:260–270

    Google Scholar 

  • Allegretta I, Eramo G, Pinto D, Kilikoglou V (2015) Strength of kaolinite-based ceramics: comparison between limestone-and quartz-tempered bodies. Appl Clay Sci 116:220–230

    Google Scholar 

  • Allegretta I, Pinto D, Eramo G (2016) Effects of grain size on the reactivity of limestone temper in a kaolinitic clay. Appl Clay Sci 126:223–234

    Google Scholar 

  • Aloupi-Siotis, E. (2020). Ceramic technology. How to characterise black Fe-based glass-ceramic coatings. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01134-x

  • Ambrose SH (2001) Paleolithic technology and human evolution. Science 291:1748–1753. https://doi.org/10.1126/science.1059487

    Article  Google Scholar 

  • Andrade FA, Al-Qureshi HA, Hotza D (2011) Measuring the plasticity of clays: a review. Appl Clay Sci 51:1–7. https://doi.org/10.1016/j.clay.2010.10.028

    Article  Google Scholar 

  • Arnold DE (1971) Ethnomineralogy of Ticul, Yucatan potters: etics and emics. Am Antiq 36:20–40

    Google Scholar 

  • Arnold DE, Neff H, Bishop RL (1991) Compositional analysis and “sources” of pottery: an ethnoarcheological approach. Am Anthropol 93:70–90. https://doi.org/10.1525/aa.1991.93.1.02a00040

    Article  Google Scholar 

  • Barilaro D, Crupi V, Interdonato S, Longo F, Maisano G, Majolino D, Venuti V, Barone G, Mazzoleni P, Tigano G, Imberti S, Kockelmann W (2008) Archaeometric investigation of red-figure pottery fragments from Gioiosa Guardia (Messina, Sicily) by INAA, FT-IR and TOF-ND techniques. Nuovo Cimento - Societa Italiana di Fisica Sezione C 31:371–388. https://doi.org/10.1393/ncc/i2008-10297-1

    Article  Google Scholar 

  • Barone G, Bartoli L, Belfiore CM, Crupi V, Longo F, Majolino D, Mazzoleni P, Venuti V (2011) Comparison between TOF-ND and XRD quantitative phase analysis of ancient potteries. J Anal At Spectrom 26:1060–1067

    Google Scholar 

  • Barone G, Mazzoleni P, Spagnolo GV, Raneri S (2019) Artificial neural network for the provenance study of archaeological ceramics using clay sediment database. J Cult Herit 38:147–157. https://doi.org/10.1016/j.culher.2019.02.004

    Article  Google Scholar 

  • Basso E, Binder D, Messiga B, Riccardi MP (2006) The Neolithic pottery of Abri Pendimoun (Castellar, France): a petro-archaeometric study. Geol Soc Lond, Spec Publ 257:33–48

    Google Scholar 

  • Bayley J, Rehren T (2007) Towards a functional and typological classification of crucibles. Archetype/British Museum, London

    Google Scholar 

  • Belfiore CM, La Russa MF, Barca D, Galli G, Pezzino A, Ruffolo SA, Viccaro M, Fichera GV (2014) A trace element study for the provenance attribution of ceramic artefacts: the case of Dressel 1 amphorae from a late-Republican ship. J Archaeol Sci 43:91–104. https://doi.org/10.1016/j.jas.2013.12.015

    Article  Google Scholar 

  • Bebber MR (2017) Tempered strength: a controlled experiment assessing opportunity costs of adding temper to clay. J Archaeol Sci 86:1–13

    Google Scholar 

  • Bollong CA, Vogel JC, Jacobson L, van der Westhuizen WA, Garth Sampson C (1993) Direct dating and identity of fibre temper in pre-contact bushman (Basarwa) pottery. J Archaeol Sci 20:41–55. https://doi.org/10.1006/jasc.1993.1003

    Article  Google Scholar 

  • Bong WSK, Matsumura K, Yokoyama K, Nakai I (2010) Provenance study of early and middle bronze age pottery from Kaman-Kalehöyük, Turkey, by heavy mineral analysis and geochemical analysis of individual hornblende grains. J Archaeol Sci 37:2165–2178. https://doi.org/10.1016/j.jas.2010.03.013

    Article  Google Scholar 

  • Bourry C-É (1897) Traité des industries céramiques. Gauthier-Villars et fils, Paris

    Google Scholar 

  • Braekmans D, Degryse P (2017) Petrography: optical microscopy. In: Hunt AM (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, England, 233–265

  • Bronitsky G (1986) The use of materials science techniques in the study of pottery construction and use. In: Schiffer MB (ed) advances in archaeological method and theory. Elsevier, pp 209–276

  • Bronitsky G, Hamer R (1986) Experiments in ceramic technology: the effects of various tempering materials on impact and thermal-shock resistance. Am Antiq 51:89–101. https://doi.org/10.2307/280396

    Article  Google Scholar 

  • Brooks D, Bieber AM, Harbottle G, Sayre EV (1974) Biblical studies through activation analysis of ancient pottery. In: Archaeological chemistry. AMERICAN CHEMICAL SOCIETY, pp 48–80

  • Bull ID, Simpson IA, van Bergen PF, Evershed RP (1999) Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73:86–96. https://doi.org/10.1017/S0003598X0008786X

    Article  Google Scholar 

  • Cairo A, Messiga B, Riccardi MP (2001) Technological features of the ‘Cotto Variegato’: a petrological approach. J Cult Herit 2:133–142

    Google Scholar 

  • Capelli C, Mannoni T (1996) Proposte per una scheda descrittiva delle sezioni sottili e per una classificazione minero-petrografica delle ceramiche. Archeologia medievale 23:689–697

    Google Scholar 

  • Chayes F (1956) Petrographic modal analysis: an elementary statistical appraisal. Wiley, New York

    Google Scholar 

  • Cogswell JW, Neff H, Glascock MD (1998) Analysis of shell-tempered pottery replicates: implications for provenance studies. Am Antiq 63:63–72

    Google Scholar 

  • Collomb P, Maggetti M (1996) Dissolution des phosphates présents dans des céramiques contaminées. ArchéoSciences, revue d’Archéométrie 20:69–75

    Google Scholar 

  • Colomban P (2013) Rocks as blue, green and black pigments/dyes of glazed pottery and enamelled glass artefacts – a review. Eur J Mineral 25:863–879. https://doi.org/10.1127/0935-1221/2013/0025-2305

    Article  Google Scholar 

  • Colomban P, Sagon G, Faurel X (2001) Differentiation of antique ceramics from the Raman spectra of their coloured glazes and paintings. J Raman Spectrosc 32:351–360. https://doi.org/10.1002/jrs.704

    Article  Google Scholar 

  • Cuomo Di Caprio N (2007) La ceramica in archeologia, 2: antiche tecniche di lavorazione e moderni metodi di indagine. L’Erma di Bretschneider, Roma

  • Cultrone G, Rodriguez-Navarro C, Sebastian E, Cazalla O, De La Torre MJ (2001) Carbonate and silicate phase reactions during ceramic firing. Eur J Mineral 13:621–634. https://doi.org/10.1127/0935-1221/2001/0013-0621

    Article  Google Scholar 

  • Cuomo di Caprio N, Vaughan SJ (1993) An experimental study in distinguishing grog (chamotte) from argillaceous inclusions in ceramic thin sections. Archeomaterials 7:21–40

    Google Scholar 

  • Dal Sasso G, Maritan L, Salvatori S, Mazzoli C, Artioli G (2014) Discriminating pottery production by image analysis: a case study of Mesolithic and Neolithic pottery from Al Khiday (Khartoum, Sudan). J Archaeol Sci 46:125–143

    Google Scholar 

  • De Benedetto GE, Laviano R, Sabbatini L, Zambonin PG (2002) Infrared spectroscopy in the mineralogical characterization of ancient pottery. J Cult Herit 3:177–186. https://doi.org/10.1016/S1296-2074(02)01178-0

    Article  Google Scholar 

  • DeBoer WR, Lathrap DW (1979) The making and breaking of Shipibo-Conibo ceramics. In: Kramer C (ed) Ethnoarchaeology: implications of ethnography for archaeology. Columbia University Press, Guildford, pp 102–138

    Google Scholar 

  • De Bonis A, Arienzo I, D’Antonio M et al (2018) Sr-Nd isotopic fingerprinting as a tool for ceramic provenance: its application on raw materials, ceramic replicas and ancient pottery. J Archaeol Sci 94:51–59. https://doi.org/10.1016/j.jas.2018.04.002

    Article  Google Scholar 

  • de Lapérouse, J.-F. (2020). Ceramic musealisation: how ceramics are conserved and the implications for research. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01139-6

  • De Keyser TL (1999) Digital scanning of thin sections and peels. J Sediment Res 69:962–964

    Google Scholar 

  • Delage C (2017) Once upon a time … the (hi) story of the concept of the chaîne opératoire in French prehistory. World Archaeol 49:158–173. https://doi.org/10.1080/00438243.2017.1300104

    Article  Google Scholar 

  • De Santis A, Mattei E, Montini I, Pelosi C (2012) A micro-Raman and internal microstratigraphic study of ceramic sherds from the kilns of the Medici Castle at Cafaggiolo. Archaeometry 54:114–128. https://doi.org/10.1111/j.1475-4754.2011.00604.x

    Article  Google Scholar 

  • Di Pierro S (2002) Domestic production versus pottery exchange during the Final Neolithic: characterization of the Auvernier-cordé ceramics from the Portalban and St. Blaise settlements, Western Switzerland. PhD Thesis, University of Fribourg, Switzerland

  • Di Pierro S (2003) Ceramic production technology and provenance during the final neolithic: the portalban settlement, Neuchâtel lake, Switzerland. ArchéoSciences, revue d’Archéométrie 27:75–93

    Google Scholar 

  • Dickinson WR, Shutler R (2000) Implications of petrographic temper analysis for Oceanian prehistory. J World Prehist 14:203–266

    Google Scholar 

  • van Doosselaere B, Delhon C, Hayes E (2014) Looking through voids: a microanalysis of organic-derived porosity and bioclasts in archaeological ceramics from Koumbi Saleh (Mauritania, fifth/sixth–seventeenth century AD). Archaeol Anthropol Sci 6:373–396. https://doi.org/10.1007/s12520-014-0176-5

    Article  Google Scholar 

  • Druc IC, Inokuchi K, Dussubieux L (2017) LA-ICP-MS and petrography to assess ceramic interaction networks and production patterns in Kuntur Wasi, Peru. J Archaeol Sci Rep 12:151–160. https://doi.org/10.1016/j.jasrep.2017.01.017

    Article  Google Scholar 

  • Duminuco P, Messiga B, Riccardi MP (1998) Firing process of natural clays. Some microtextures and related phase compositions. Thermochim Acta 321:185–190

    Google Scholar 

  • Echallier J-C (1984) Éléments de technologie céramique et d’analyse des terres cuites archéologiques. Association pour la diffusion de l’archéologie méridionale, Lambesc

    Google Scholar 

  • Eppler RA, Eppler DR (2000) Glazes and glass coatings. The American Ceramic Society, Inc., Columbus, Ohio

    Google Scholar 

  • Eramo G (2006) Pre-industrial glassmaking in the Swiss Jura: the refractory earth for the glassworks of Derrière Sairoche (ct. Bern, 1699–1714). Geological Society, London, Special Publications 257:187–199. https://doi.org/10.1144/GSL.SP.2006.257.01.15

  • Eramo G, Aprile A, Muntoni IM, Zerboni A (2014) Textural and morphometric analysis applied to Holocene pottery from Takarkori Rock Shelter (SW Libya, Central Sahara): a quantitative sedimentological approach. Archaeometry 56:36–57. https://doi.org/10.1111/arcm.12043

    Article  Google Scholar 

  • Eramo G, Gargallo A, Zanella E, Nodari L, Russo U, Bishop J, Sulpizio R, Di Vito MA (2011) Technology, use and volcanological relevance of the early bronze age pottery from Afragola Village (Naples). In: European meeting on ancient ceramics, EMAC 2011. Vienna

  • Eramo G, Mangone A (2019) Archaeometry of ceramic materials. Physical Sciences Reviews 4. https://doi.org/10.1515/psr-2018-0014

  • Eramo G, Muntoni IM, Gallo S, De Siena A (2018) Approaching the early Greek Colonization in Southern Italy: ceramic local production and imports in the Siritis area (Basilicata). J Archaeol Sci Rep 21:995–1008

    Google Scholar 

  • Evershed RP, Heron C, Goad LJ (1990) Analysis of organic residues of archaeological origin by high-temperature gas chromatography and gas chromatography-mass spectrometry. Analyst 115:1339–1342. https://doi.org/10.1039/AN9901501339

    Article  Google Scholar 

  • Fabbri B, Gualtieri S, Shoval S (2014) The presence of calcite in archeological ceramics. J Eur Ceram Soc 34:1899–1911

    Google Scholar 

  • Farnsworth M (1970) Corinthian pottery: technical studies. Am J Archaeol 74:9–20

    Google Scholar 

  • Feathers JK (2006) Explaining shell-tempered pottery in prehistoric Eastern North America. J Archaeol Method Theory 13:89–133

    Google Scholar 

  • Folk RL (1974) Petrology of sedimentary rocks. Hemphill Publishing Company, Austin, Texas

    Google Scholar 

  • Fookes PG (1991) Geomaterials. Q J Eng Geol Hydrogeol 24:3–15

    Google Scholar 

  • Fowler KD (2017) Ethnography. In: Hunt AM (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, England, pp 469–486

  • Freestone IC (1982) Applications and potential of electron probe micro-analysis in technological and provenance investigations of ancient ceramics. Archaeometry 24:99–116

    Google Scholar 

  • Freestone IC (1989) Refractory materials and their procurement. In: Archaometallurgie der Alten Welt: Beitrage zum Internationalen Symposium Old World Archaeology, Heidelberg 1987= Old World Archaeometallurgy: Proceedings of the International Symposium Old World Archaeometallurgy, Heidelberg 1987. pp 155–162

  • Galli A, Sibilia E, Martini M (2020) Ceramic chronology by luminescence dating. How and when it is possible to date ceramic artefacts. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01140-z

  • Gilmore ZI, Sassaman KE, Glascock MD (2018) Geochemical sourcing of fiber-tempered pottery and the organization of late archaic Stallings communities in the American Southeast. J Archaeol Sci 99:35–46. https://doi.org/10.1016/j.jas.2018.08.009

    Article  Google Scholar 

  • Gliozzo E (2020a) Ceramics investigation. Research questions and sampling criteria Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01128-9

  • Gliozzo E (2020b) Ceramic technology. How to reconstruct the firing process Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01133-y

  • Gliozzo E, Memmi Turbanti I (2004) Black gloss pottery: production sites and technology in Northern Etruria, Part I: Provenance studies. Archaeometry 46:201–225. https://doi.org/10.1111/j.1475-4754.2004.00153.x

    Article  Google Scholar 

  • Gliozzo E, Turchiano M, Fantozzi PL, Romano AV (2018) Geosources for ceramic production and communication pathways: the exchange network and the scale of chemical representative differences. Appl Clay Sci 161:242–255. https://doi.org/10.1016/j.clay.2018.04.026

    Article  Google Scholar 

  • Gonda C, Évéquoz E, Eramo G (2007) Découverte d’une verrerie du XIX e siècle: rebeuvelier (Jura, CH). In: Gonda C, Bridel P, Luginbühl T, Morel J (eds) Premières journées archéologiques frontalières de l’Arc jurassien: actes, Delle (F) - Boncourt (CH), 21–22 octobre 2005. Presses Universitaires de Franche-Comté; Office de la culture et Société jurassienne d’émulation, Besançon et Porrentruy, pp 311–320

  • Gosselain OP, Livingstone Smith A (2005) The source: clay selection and processing practices in sub-Saharan Africa. Pottery manufacturing processes: reconstruction and interpretation. BAR International Series 1349:33–47

    Google Scholar 

  • Grifa C, Cultrone G, Langella A, Mercurio M, De Bonis A, Sebastián E, Morra V (2009) Ceramic replicas of archaeological artefacts in Benevento area (Italy): Petrophysical changes induced by different proportions of clays and temper. Appl Clay Sci 46:231–240

    Google Scholar 

  • Grifa C, De Bonis A, Langella A, Mercurio M, Soricelli G, Morra V (2013) A Late Roman ceramic production from Pompeii. J Archaeol Sci 40:810–826

    Google Scholar 

  • Gualtieri S (2020) Ceramic raw materials. How to establish the technological suitability of a raw material. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01135-w

  • Haaland MM, Czechowski M, Carpentier F, Lejay M, Vandermeulen B (2019) Documenting archaeological thin sections in high-resolution: a comparison of methods and discussion of applications. Geoarchaeology 34:100–114. https://doi.org/10.1002/gea.21706

    Article  Google Scholar 

  • Haldorsen S (2008) Grain-size distribution of subglacial till and its relation to glacial crushing and abrasion. Boreas 10:91–105. https://doi.org/10.1111/j.1502-3885.1981.tb00472.x

    Article  Google Scholar 

  • Hamer F, Hamer J (2004) The potter’s dictionary of materials and techniques. University of Pennsylvania Press

  • Harbottle G, Gordon BM, Jones KW (1986) Use of synchrotron radiationin archaeometry. Nucl Instrum Methods Phys Res Sect B 14:116–122

    Google Scholar 

  • Heidke JM, Miksa EJ (2000) Correspondence and discriminant analyses of sand and sand temper compositions, Tonto Basin, Arizona. Archaeometry 42:273–299

    Google Scholar 

  • Heidke JM, Miksa EJ, Wallace HD (2002) A petrographic approach to sand-tempered pottery provenance studies. Ceramic production and circulation in the Greater Southwest: source determination by INAA and complementary mineralogical investigations. The Cotsen Institute of Archaeology, pp 152–178

  • Heimann RB (2010) Classic and advanced ceramics: from fundamentals to applications. John Wiley & Sons, New York

    Google Scholar 

  • Heimann RB, Maggetti M (2019) The struggle between thermodynamics and kinetics: phase evolution of ancient and historical ceramics. In: Artioli G (ed) The contribution of mineralogy to cultural heritage, 1st edn. Mineralogical Society of Great Britain & Ireland, pp 233–282

  • Hein A, Kilikoglou V (2020) Ceramic raw materials. How to recognize them and locate the supply basins Chemistry. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01129-8

  • Hein A, Day PM, Ontiveros MC, Kilikoglou V (2004) Red clays from Central and Eastern Crete: geochemical and mineralogical properties in view of provenance studies on ancient ceramics. Appl Clay Sci 24:245–255

    Google Scholar 

  • Hein A, Karatasios I, Müller NS, Kilikoglou V (2013) Heat transfer properties of pyrotechnical ceramics used in ancient metallurgy. Thermochim Acta 573:87–94

    Google Scholar 

  • Hein A, Tsolakidou A, Iliopoulos I, Mommsen H, Buxeda i Garrigós J, Montana G, Kilikoglou V (2002) Standardisation of elemental analytical techniques applied to provenance studies of archaeological ceramics: an inter laboratory calibration study. Analyst 127:542–553. https://doi.org/10.1039/b109603f

    Article  Google Scholar 

  • Henderson J, Ma H, Cui J, Ma R, Xiao H (2020) Isotopic investigations of Chinese ceramics. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01138-7

  • Hoard RJ, O’Brien MJ, Khorasgany MG, Gopalaratnam VS (1995) A materials-science approach to understanding limestone-tempered pottery from the Midwestern United States. J Archaeol Sci 22:823–832

    Google Scholar 

  • Howarth RJ (1998) Improved estimators of uncertainty in proportions, point-counting, and pass-fail test results. Am J Sci 298:594–607

    Google Scholar 

  • Ingersoll RV (1990) Actualistic sandstone petrofacies: discriminating modern and ancient source rocks. Geology 18:733–736

    Google Scholar 

  • Ingold T (2012) Toward an ecology of materials. Annu Rev Anthropol 41:427–442. https://doi.org/10.1146/annurev-anthro-081309-145920

    Article  Google Scholar 

  • Ionescu C, Hoeck V (2017) Electron microprobe analysis (EMPA). In: Hunt AMV (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, pp. 288-304

  • Ionescu C, Hoeck V (2020) Ceramic technology. How to investigate surface finishing. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01144-9

  • Ionescu C, Hoeck V, Ghergari L (2011) Electron microprobe analysis of ancient ceramics: a case study from Romania. Appl Clay Sci 53:466–475. https://doi.org/10.1016/j.clay.2010.09.009

    Article  Google Scholar 

  • Jeffra C (2008) Hair and potters: an experimental look at temper. World Archaeol 40:151–161. https://doi.org/10.1080/00438240801889431

    Article  Google Scholar 

  • Kahl W-A, Ramminger B (2012) Non-destructive fabric analysis of prehistoric pottery using high-resolution X-ray microtomography: a pilot study on the late Mesolithic to Neolithic site Hamburg-Boberg. J Archaeol Sci 39:2206–2219. https://doi.org/10.1016/j.jas.2012.02.029

    Article  Google Scholar 

  • Katsarou S, Sampson A, Dimou E (2002) Obsidian as temper in the Neolithic pottery from Yali, Greece. In: Kilikoglou V, Maniatis Y, Hein A (eds) Modern trends in scientific studies on ancient ceramics. BAR International Series 1011:111–120

    Google Scholar 

  • Kilikoglou V, Maniatis Y, Grimanis AP (1988) The effect of purification and firing of clays on trace element provenance studies. Archaeometry 30:37–46. https://doi.org/10.1111/j.1475-4754.1988.tb00433.x

    Article  Google Scholar 

  • Kilikoglou V, Vekinis G, Maniatis Y, Day PM (1998) Mechanical performance of quartz-tempered ceramics: part I, strength and toughness. Archaeometry 40:261–279

    Google Scholar 

  • Kiryushin KY, Kiryushin YF, Glushkov IG (2012) The use of animal hair in ceramic manufacturing at the Tytkesken-2 Neolithic Site, Western Siberia. Archaeol Ethnol Anthropol Eurasia 40:41–50

    Google Scholar 

  • Kloprogge JT (2017) Raman spectroscopy of clay minerals. In: Gates WP, Kloprogge JT, Madejová J, Bergaya F (eds) Developments in clay science. Elsevier, pp 150–199

  • Kulkova M, Kulkov A (2016) The identification of organic temper in Neolithic pottery from Russia and Belarus. The Old Potter’s Almanack 21:2–12. https://doi.org/10.11588/opa.2016.1.33496

  • La Marca C, Eramo G, Muntoni IM, Barbaro CC (2017) Early Neolithic potters of the Italian Middle Adriatic region. Archeologické Rozhledy 69:227–245

    Google Scholar 

  • Leroi-Gourhan A (1965) Le Geste et la Parole-: La mémoire et les rythmes. Albin Michel, Paris

    Google Scholar 

  • Letsch J, Noll W (1983) Phase formation in several ceramic subsystems at 600 C-1000 C as a function of oxygen fugacity. In: Ceramic Forum International/Berichte der DKG. pp 259–267

  • Levi S, Amadori ML, Cazzella A, Moscoloni M, Fratini F, Pecchioni E, Conticelli S, Cioni S (1994) Analisi archeometrica della ceramica dell’età del Bronzo di Coppa Nevigata: alcune implicazioni archeologiche. Istituto Poligrafico e Zecca dello Stato, Rome, pp 101–160

    Google Scholar 

  • Livingood PC, Cordell AS (2009) Point/counter point: the accuracy and feasibility of digital image techniques in the analysis of ceramic thin sections. J Archaeol Sci 36:867–872

    Google Scholar 

  • London G (1981) Dung-tempered clay. J Field Archaeol 8:189–195

    Google Scholar 

  • Maggetti M (1982) Phase analysis and its significance for technology and origin. In: Franklin AD, Olin JS (eds) Archaeological ceramics. Smithsonian Institution Press, Washington, pp 121–133

    Google Scholar 

  • Maggetti M (2010) Neolithic pottery from Switzerland: raw materials and manufacturing processes. In: From mine to microscope, advances in the study of ancient technology. Oxbow Books, Oxford, pp 29–42

    Google Scholar 

  • Maggetti M, Ferreira Marques MF, Schubiger PA (1980) Neutron activation analysis of the terra sigillata from La Péniche. Swiss J Geosci 60:111–123

    Google Scholar 

  • Mangone A, Giannossa LC, Laviano R, Fioriello CS, Traini A (2009) Investigations by various analytical techniques to the correct classification of archaeological finds and delineation of technological features: Late Roman lamps from Egnatia: from imports to local production. Microchem J 91:214–221. https://doi.org/10.1016/j.microc.2008.11.006

    Article  Google Scholar 

  • Mariotti Lippi M, Pallecchi P (2017) Organic inclusions. In: Hunt AM (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, England, pp 565–581

  • Maritan L (2020) Ceramic abandonment. How to recognise post-depositional transformations. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01141-y

  • Maritan L, Mazzoli C (2004) Phosphates in archaeological finds: implications for environmental conditions of burial. Archaeometry 46:673–683. https://doi.org/10.1111/j.1475-4754.2004.00182.x

    Article  Google Scholar 

  • Maritan L, Mazzoli C, Freestone I (2007) Modelling changes in mollusc shell internal microstructure during firing: implications for temperature estimation in shell-bearing pottery. Archaeometry 49:529–541

    Google Scholar 

  • Matiskainen H, Alhonen P (1984) Diatoms as indicators of provenance in Finnish sub-neolithic pottery. J Archaeol Sci 11:147–157. https://doi.org/10.1016/0305-4403(84)90049-9

    Article  Google Scholar 

  • Matson FR (1971) A study of temperatures used in firing ancient Mesopotamian pottery. In: Science and archaeology. pp 65–79

  • Matson FR (1989) Ceramics: the hub of ancient craft interplay. In: McGovern PE, Notis MD (eds) Cross-craft and cross-cultural interactions in ceramics. The American Ceramic Society, Inc., Columbus, Ohio, pp 13–28

    Google Scholar 

  • Matthew AJ, Woods AJ, Oliver C (1991) Spots before the eyes: new comparison charts for visual percentage estimation in archaeological material. Recent developments in ceramic petrology 81:211–263

  • Middleton AP, Freestone IC, Leese MN (1985) Textural analysis of ceramic thin sections: evaluation of grain sampling procedures. Archaeometry 27:64–74

    Google Scholar 

  • Montana G (2017) Ceramic raw materials. In: Hunt AM (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, England, pp 87–100

  • Montana G (2020) Ceramic raw materials. How to recognize them and locate the supply basins. Mineralogy, Petrography. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01130-1

  • Montana G, Fabbri B, Santoro S, Gualtieri S, Iliopoulos I, Guiducci G, Mini S (2007) Pantellerian ware: a comprehensive archaeometric review. Archaeometry 49:455–481. https://doi.org/10.1111/j.1475-4754.2007.00314.x

    Article  Google Scholar 

  • Müller NS (2017) Mechanical and thermal properties. In: Hunt AM (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, England, pp 603–624

  • Müller NS, Kilikoglou V, Day PM, Vekinis G (2010) The influence of temper shape on the mechanical properties of archaeological ceramics. J Eur Ceram Soc 30:2457–2465

    Google Scholar 

  • Muntoni IM, Eramo G, Laviano R (2009) Production of Mid-late Neolithic “Serra d’Alto” ware in the bradanic trough (south eastern Italy), In: Biró KT, Szilagyi V, Kreiter A (eds) Vessels: inside and outside. Proceedings of the 9th European Meeting on Ancient Ceramics (EMAC ‘07). Budapest, pp 53–62

  • Nicholson PT, Shaw I (2000) Ancient Egyptian materials and technology. Cambridge University Press, Cambridge; New York

  • Nodari L, Marcuz E, Maritan L, Mazzoli C, Russo U (2007) Hematite nucleation and growth in the firing of carbonate-rich clay for pottery production. J Eur Ceram Soc 27:4665–4673

    Google Scholar 

  • Odriozola C, Martínez-Blanes JM (2007) Estimateof firing temperatures through bone-based chalcolithic decorated pottery. J Therm Anal Calorim 87:135–141. https://doi.org/10.1007/s10973-006-7833-6

    Article  Google Scholar 

  • Olcese G, Thierrin-Michael G (2007) Graeco-italic amphorae in the region of Ostia: archaeology and archaeometry. In: Biró KT, Szilagyi V, Kreiter A (eds) Vessels: inside and outside. Proceedings of the 9th European Meeting on Ancient Ceramics (EMAC ‘07). Budapest, pp 159–164

  • O’Malley N, Tune TW, Blustain MS (1983) Technological examination of Fayette thick ceramics: a petrographic analysis and review. Southeast Archaeol 2:145–154

    Google Scholar 

  • Palumbi G, Gratuze B, Harutyunyan A, Chataigner C (2014) Obsidian-tempered pottery in the southern Caucasus: a new approach to obsidian as a ceramic-temper. J Archaeol Sci 44:43–54

    Google Scholar 

  • Papageorgiou, I. (2020). Ceramic investigation. How to perform statistical analyses. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01142-x

  • Pantos E, Tang CC, MacLean EJ, Roberts MA, Murphy BM, Collins SP, Cheung KC, Strange RW, Murphy LM, Papiz MZ (2002) Applications of synchrotron radiation to archaeological ceramics. BAR International Series 1011:377–384

    Google Scholar 

  • Parker JE, Thompson SP, Lennie AR, J. Potter J, Tang CC (2010) A study of the aragonite-calcite transformation using Raman spectroscopy, synchrotron powder diffraction and scanning electron microscopy. Cryst Eng Comm 12:1590–1599. https://doi.org/10.1039/B921487A

  • Peacock DPS (1970) The scientific analysis of ancient ceramics: a review. World Archaeol 1:375–389

    Google Scholar 

  • Perttula TK, Beth Trubitt M, Girard JS (2011) The use of shell-tempered pottery in the Caddo area of the Southeastern United States. Southeast Archaeol 30:242–267

    Google Scholar 

  • Picon M, Vichy M, Meille E (1971) Composition of the Lezoux, Iyon and Arezzo Samian ware. Archaeometry 13:191–208

    Google Scholar 

  • Pollard AM, Batt CM, Stern B, Young SMM (2007) Analytical chemistry in archaeology. Cambridge University Press, New York

    Google Scholar 

  • Porter JW (1964) Comment on Weaver’s “Technological Analysis of Lower Mississippi Ceramic Materials”. Am Antiq 29:520–521

    Google Scholar 

  • Potter PE, Maynard JB, Pryor WA (1980) Sedimentology of shale: study guide and reference source. Springer Science & Business Media

    Google Scholar 

  • Pradell, T., Molera, J. (2020). Ceramic technology. How to characterise ceramic glazes. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01136-9

  • Prêt D, Sammartino S, Beaufort D et al (2010a) A new method for quantitative petrography based on image processing of chemical element maps: Part II. Semi-quantitative porosity maps superimposed on mineral maps. Am Mineral 95:1389–1398

    Google Scholar 

  • Prêt D, Sammartino S, Beaufort D et al (2010b) A new method for quantitative petrography based on image processing of chemical element maps: Part I. Mineral mapping applied to compacted bentonites. Am Mineral 95:1379–1388

    Google Scholar 

  • Prufer OH, McKenzie DH (1966) Peters cave: two woodland occupations in Ross County, Ohio. Ohio J Sci 66:21

    Google Scholar 

  • Quinn PS (2013) Ceramic petrography: the interpretation of archaeological pottery & related artefacts in thin section. Archaeopress, Oxford

    Google Scholar 

  • Quinn P, Alaimo RJ, Montana G (1998) Calcareous nannofossil analysis of ceramics and probable raw materials from an ancient Punic kiln site on the island of Mozia, western Sicily. J Nannoplankton Res 20:85–87

    Google Scholar 

  • Quinn PS, Day PM (2007) Ceramic micropalaeontology: the analysis of microfossils in ancient ceramics. J Micropalaeontol 26:159–168. https://doi.org/10.1144/jm.26.2.159

    Article  Google Scholar 

  • Rathossi C, Pontikes Y (2010a) Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: Reaction paths, crystalline phases, microstructure and colour. J Eur Ceram Soc 30:1841–1851. https://doi.org/10.1016/j.jeurceramsoc.2010.02.002

    Article  Google Scholar 

  • Rathossi C, Pontikes Y (2010b) Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments: Part II. Chemistry of pyrometamorphic minerals and comparison with ancient ceramics J Eur Ceram Soc 30:1853–1866. https://doi.org/10.1016/j.jeurceramsoc.2010.02.003

  • Reedy CL, Anderson J, Reedy TJ, Liu Y (2014) Image analysis in quantitative particle studies of archaeological ceramic thin sections. Adv Archaeol Pract 2:252–268

    Google Scholar 

  • Reid KC (1984) Fire and ice: new evidence for the production and preservation of Late Archaic fiber-tempered pottery in the middle-latitude lowlands. Am Antiq 49:55–76

    Google Scholar 

  • Riccardi MP, Messiga B, Duminuco P (1999) An approach to the dynamics of clay firing. Appl Clay Sci 15:393–409

    Google Scholar 

  • Rice PM (1987) Pottery analysis: a sourcebook. University of Chicago Press, Chicago

    Google Scholar 

  • Rizzutto M, Tabacniks M (2017) Particle induced X-ray emission (PIXE) and its applications for ceramic analysis. In: Hunt AM (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, pp 382–398

  • Rodrigues S, Costa M (2016) Phosphorus in archeological ceramics as evidence of the use of pots for cooking food. Appl Clay Sci 123:224–231. https://doi.org/10.1016/j.clay.2015.10.038

    Article  Google Scholar 

  • Roper DC, Josephs RL, Beck ME (2010) Determining provenance of shell-tempered pottery from the central plains using petrography and oxidation analysis. Am Antiq 75:134–157

    Google Scholar 

  • Roux V (2017) Ceramic manufacture. The chaîne opératoire approach. In: Hunt AM (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, England, pp 101–113

  • Roux V (2019) Ceramics and society: a technological approach to archaeological assemblages. Springer, Berlin

    Google Scholar 

  • Ryan CG (2004) Ion beam microanalysis in geoscience research. Nucl Instrum Methods Phys Res B 219–220:534–549. https://doi.org/10.1016/j.nimb.2004.01.117

    Article  Google Scholar 

  • Rye OS (1976) Keeping your temper under control: materials and the manufacture of Papuan pottery. Archaeology & Physical Anthropology in Oceania 11:106–137

    Google Scholar 

  • Rye OS (1981) Pottery technology: principles and reconstruction. Taraxacum, Washington, DC

    Google Scholar 

  • Rye OS, Evans C (1976) Traditional pottery techniques of Pakistan: field and laboratory studies. Smithson Contrib Anthropol:1–283

  • Saks SY (1976) Principle of hydrodynamic equivalence of clastic particles. Int Geol Rev 18:541–544. https://doi.org/10.1080/00206817609471240

    Article  Google Scholar 

  • Sambrook Smith GH (1996) Bimodal fluvial bed sediments: origin, spatial extent and processes. Prog Phys Geogr 20:402–417

    Google Scholar 

  • Santacreu DA (2014a) Identifying spathic calcite recipe in archaeological ceramics: possibilities and limitations. Cerâmica 60:379–391. https://doi.org/10.1590/S0366-69132014000300009

    Article  Google Scholar 

  • Santacreu DA (2014b) Materiality, techniques and society in pottery production: the technological study of archaeological ceramics through paste analysis. Walter de Gruyter GmbH & Co KG

  • Schiffer MB (1990) The influence of surface treatment on heating effectiveness of ceramic vessels. J Archaeol Sci 17:373–381. https://doi.org/10.1016/0305-4403(90)90002-M

    Article  Google Scholar 

  • Schlanger N (1994) Mindful technology: unleashing the chaîne opératoire for an archaeology of mind. In: Renfrew C, Zubrow EBWE (eds) the ancient mind: elements of cognitive archaeology. Cambridge University Press, pp 143–151

  • Schubert P (1986) Petrographic modal analysis - a necessary complement to chemical analysis of ceramic coarse ware. Archaeometry 28:163–178. https://doi.org/10.1111/j.1475-4754.1986.tb00384.x

    Article  Google Scholar 

  • Schwedt A, Mommsen H (2004) Clay paste mixtures identified by neutron activation analysis in pottery of a Roman workshop in Bonn, Germany. J Archaeol Sci 31:1251–1258. https://doi.org/10.1016/j.jas.2004.02.003

    Article  Google Scholar 

  • Schwedt A, Mommsen H (2007) On the influence of drying and firing of clay on the formation of trace element concentration profiles within pottery. Archaeometry 49:495–509. https://doi.org/10.1111/j.1475-4754.2007.00316.x

    Article  Google Scholar 

  • Sciau, Ph, Sanchez, C., Gliozzo, E. (2020). Ceramic technology. How to characterise terra sigillata ware. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01137-8

  • Sestier C, Martineau R, Chenu E, Elias A, Goydadin R, Ladmira E (2005) Imaging vegetal inclusions in porous clayey materials and ceramics, by impregnation with fluorescent polymers. In: Understanding people through their pottery, proceedings of the 7th European Meeting on Ancient Ceramics. EMAC. Pp 27–31

  • Shahack-Gross R (2011) Herbivorous livestock dung: formation, taphonomy, methods for identification, and archaeological significance. J Archaeol Sci 38:205–218

    Google Scholar 

  • Shainberg I, Levy GI (2005) Flocculation and dispersion. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Oxford, pp 27–34

    Google Scholar 

  • Shepard AO (1964) Temper identification:“Technological Sherd-Splitting” or an unanswered challenge. Am Antiq 29:518–520

    Google Scholar 

  • Shepard AO (1965) Ceramics for the archaeologist. Carnegie Institute of Washington, Washington

    Google Scholar 

  • Shillito L, Almond M, Wicks K et al (2008) The use of FT-IR as a screening technique for organic residue analysis of archaeological samples. Spectrochim Acta A Mol Biomol Spectrosc 72:120–125. https://doi.org/10.1016/j.saa.2008.08.016

    Article  Google Scholar 

  • Shoval S (2017) Fourier transform infrared spectroscopy (FT-IR) in archaeological ceramic analysis. In: The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, England, pp 509–530

  • Shoval S, Beck P (2005) Thermo-FTIR spectroscopy analysis as a method of characterizing ancient ceramic technology. J Therm Anal Calorim 82:609–616. https://doi.org/10.1007/s10973-005-0941-x

    Article  Google Scholar 

  • Shoval S, Beck P, Yadin E (2006) The ceramic technology used in the manufacture of Iron Age pottery from Galilee. Geol Soc Lond, Spec Publ 257:101–117

    Google Scholar 

  • Sillar B (2000) Dung by preference: the choice of fuel as an example of how Andean pottery production is embedded within wider technical, social, and economic practices. Archaeometry 42:43–60

    Google Scholar 

  • Sillar B, Tite MS (2000) The challenge of ‘technological choices’ for materials science approaches in archaeology. Archaeometry 42:2–20

    Google Scholar 

  • Simon HA (2008) The sciences of the artificial, 3. ed., MIT Press, Cambridge, Mass

  • Skibo JM, Schiffer MB, Reid KC (1989) Organic-tempered pottery: an experimental study. Am Antiq 54:122–146

    Google Scholar 

  • Smith GD, Clark RJH (2004) Raman microscopy in archaeological science. J Archaeol Sci 31:1137–1160. https://doi.org/10.1016/j.jas.2004.02.008

    Article  Google Scholar 

  • Spataro M, Mommsen H, Villing A (2019) Making pottery in the Nile Delta: ceramic provenance and technology at Naukratis, 6th–3rd centuries BC. Archaeol Anthropol Sci 11:1059–1087

    Google Scholar 

  • Spertzel Black SE (2011) Upland Rockshelters and late woodland communities in the Hocking Valley, Southeastern Ohio: North American Archaeologist 31:405–426. https://doi.org/10.2190/NA.31.3-4.g

  • Sterba JH, Mommsen H, Steinhauser G, Bichler M (2009) The influence of different tempers on the composition of pottery. J Archaeol Sci 36:1582–1589. https://doi.org/10.1016/j.jas.2009.03.022

    Article  Google Scholar 

  • Stilborg O (2001) Temper for the sake of coherence: analyses of bone-and chaff-tempered ceramics from Iron Age Scandinavia. Eur J Archaeol 4:398–404

    Google Scholar 

  • Stoltman JB (2001) The role of petrography in the study of archaeological ceramics. In: Earth sciences and archaeology. Springer, Berlin, pp 297–326

    Google Scholar 

  • Stoner WD, Glascock MD (2012) The forest or the trees? Behavioral and methodological considerations for geochemical characterization of heavily-tempered ceramic pastes using NAA and LA-ICP-MS. J Archaeol Sci 39:2668–2683. https://doi.org/10.1016/j.jas.2012.04.011

    Article  Google Scholar 

  • Taira A, Scholle PA (1979) Origin of bimodal sands in some modern environments. J Sediment Res 49:777–786

    Google Scholar 

  • Tenconi M, Maritan L, Mazzoli C (2016) Textural changes in speleothem inclusions during firing: a useful tool to estimate temperature in speleothem-bearing pottery. Archaeometry 58:39–53

    Google Scholar 

  • Thér R (2016) Identification of pottery-forming techniques using quantitative analysis of the orientation of inclusions and voids in thin sections. Archaeometry 58:222–238

    Google Scholar 

  • Thér, R. (2020). Ceramic technology. How to reconstruct and describe pottery-forming practices. Archaeol Anthropol Sci https://doi.org/10.1007/s12520-020-01131-0

  • Thierrin-Michael G (1990) Roman wine amphorae: production sites in Italy and imports to Switzerland. In: Archaeometry’90. Pp 523–532

  • Tite MS (1999) Pottery production, distribution, and consumption—the contribution of the physical sciences. J Archaeol Method Theory 6:181–233

    Google Scholar 

  • Tite MS (2008) Ceramic production, provenance and use -a review. Archaeometry 50:216–231

    Google Scholar 

  • Tite MS, Maniatis Y (1975) Examination of ancient pottery using the scanning electron microscope. Nature 257:122–123. https://doi.org/10.1038/257122a0

    Article  Google Scholar 

  • Tite MS, Kilikoglou V, Vekinis G (2001) Strength, toughness and thermal shock resistance of ancient ceramics, and their influence on technological choice. Archaeometry 43:301–324

    Google Scholar 

  • Tsetlin YB (2003) Organic tempers in ancient ceramics. In: Serneels V, Di Pierro S, Maggetti M (eds) Ceramics in the society. Proceedings of the 6th European Meeting on Ancient Ceramics, Fribourg. pp 289–306

  • Tucker ME (2009) Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley & Sons, New York

    Google Scholar 

  • Velde B (1992) Introduction to clay minerals: chemistry, origins, uses and environmental significance. Chapman and Hall Ltd, London

    Google Scholar 

  • Velde B, Druc IC (1999) Archaeological ceramic materials: origin and utilization. Springer Science & Business Media, Berlin Heidelberg

    Google Scholar 

  • Velraj G, Tamilarasu S, Ramya R (2015) FTIR, XRD and SEM-EDS studies of archaeological pottery samples from recently excavated site in Tamil Nadu, India. Materials Today: Proceedings 2:934–942. https://doi.org/10.1016/j.matpr.2015.06.012

    Article  Google Scholar 

  • Vieira Ferreira LF, Ferreira Machado I, Ferraria AM, Casimiro TM, Colomban P (2013) Portuguese tin-glazed earthenware from the 16th century: a spectroscopic characterization of pigments, glazes and pastes. Appl Surf Sci 285:144–152. https://doi.org/10.1016/j.apsusc.2013.08.016

    Article  Google Scholar 

  • Wallis NJ, Cordell AS, Newsom LA (2011) Using hearths for temper: petrographic analysis of Middle Woodland charcoal-tempered pottery in Northeast Florida. J Archaeol Sci 38:2914–2924

    Google Scholar 

  • Wallis NJ, Kamenov GD (2013) Challenges in the analysis of heterogeneous pottery by LA–ICP–MS: a comparison with INAA. Archaeometry 55:893–909. https://doi.org/10.1111/j.1475-4754.2012.00718.x

    Article  Google Scholar 

  • Walter TL, Paine RR, Horni H (2004) Histological examination of bone-tempered pottery from mission Espıritu Santo (41VT11), Victoria County, Texas. J Archaeol Sci 31:393–398

    Google Scholar 

  • Walton M, Trentelman K (2007) Trace element indicators of fabrication technology for coral red and black gloss decoration on Greek attic pottery. MRS Online Proceedings Library Archive 1047:Y02–Y06. https://doi.org/10.1557/PROC-1047-Y02-06

    Article  Google Scholar 

  • Weaver EC (1963) Technological analysis of prehistoric Lower Mississippi ceramic materials: a preliminary report. Am Antiq 29:49–56

    Google Scholar 

  • Whitbread IK (1986) The characterisation of argillaceous inclusions in ceramic thin sections. Archaeometry 28:79–88. https://doi.org/10.1111/j.1475-4754.1986.tb00376.x

    Article  Google Scholar 

  • Whitbread IK (1995) Greek transport amphorae: a petrological and archaeological study. British School at Athens, London

    Google Scholar 

  • Whitbread IK (2003) Clays of Corinth: the study of a basic resource for ceramic production. Corinth: Results of excavations conducted by the American School of Classical Studies at Athens 1–13

  • Wilkinson I, Quinn P, Williams M, Taylor J, Whitbread I (2017) Ceramic Micropalaeontology. In: Hunt A (ed) The Oxford handbook of archaeological ceramic analysis. Oxford University Press, Oxford, UK, pp 266–287

    Google Scholar 

  • Williams DF (1981) Heavy mineral analysis of bronze age pottery form Melos and Thera. A preliminary report. ArchéoSciences, revue d’Archéométrie 1:321–323. https://doi.org/10.3406/arsci.1981.1162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Giacomo Eramo.

Ethics declarations

Conflict of interest

The author declares that there are no conflicts of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is a Topical Collection on Ceramics: Research questions and answers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eramo, G. Ceramic technology: how to recognize clay processing. Archaeol Anthropol Sci 12, 164 (2020). https://doi.org/10.1007/s12520-020-01132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12520-020-01132-z

Keywords

Navigation