Skip to main content
Log in

First in situ pXRF analyses of rock paintings in Erongo, Namibia: results, current limits, and prospects

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Namibia is one of the southern African countries hosting the richest rock art heritage, with thousands of rock paintings. Although numerous studies investigated their distribution, style, and possible meaning, few are known about the materials used to perform these paintings. Our in situ study aimed at identifying the diversity of pigments and alterations of some rock paintings in the northwestern part of the Erongo (Namibia). It relies on extensive pXRF analyses of 35 figures from eight rock art sites of the area. Despite common limits of in situ pXRF analyses, the extensive number of figures analyzed and the original data treatment that we performed pioneered the first scientific analyses of the pigments from rock painting sites in the Erongo Mountains. Furthermore, the study also confirmed the presence of iron oxide pigments on a portion of wall exposed during the excavations carried out at the archeological site of Leopard Cave and of possibly datable alterations over several paintings, paving the way to future chronological analyses of past tradition of rock paintings in Central Namibia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acevedo A, Franco N (2012) Aplicación de DStretch-ImageJ a imágenes digiteles del arte rupestre de Patagonia (Argentina). Comechingonia Virtual 6(2):152–175

    Google Scholar 

  • Appoloni CR, Lopes F, Melquiades FL, Parellada CI (2009) In situ pigments study of rock art at Jaguariaíava 1 archeological site (Paraná, Brazil) by portable energy dispersive X-ray fluorescence (EDXRF). FUMDHAMentos 9:555–562

    Google Scholar 

  • Aubert M, O’Connor S, McCulloch M, Mortimer G, Watchman A, Richer-LaFlèche M (2007) Uranium-series dating rock art in East Timor. J Archeol Sci 34:991–996

    Article  Google Scholar 

  • Beck L, Rousselièere H, Castaing J, Duran A, Lebon M, Lahlil S, Plassard F (2012) Analyze in situ des dessins préhistoriques de la grotte de Rouffignac par fluorescence X et diffraction X portable. ArcheoSciences 36:139–151

    Article  Google Scholar 

  • Beck L, Rousselière H, Castaing J, Duran A, Lebon M, Moignard B, Plassard F (2014) First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art. Talanta 129:459–464

    Article  Google Scholar 

  • Bedford C, Robinson DW, Sturt F, Bernard J (2014) Making paintings in South Central California: a qualitative methodology for differentiating between in situ red rock art pigments using portable XRF. SCA Proceedings 28:286–296

    Google Scholar 

  • Bedford C, Robinson DW, Gandy D (2018) Emidiano Blues: the California indigenous pigment palette and in situ analysis of an exotic color. Open Archeology 4:152–172

    Article  Google Scholar 

  • Bleek WH, Lloyd LC (1911) Specimens of Bushman folklore. George Allen & Co, London

    Google Scholar 

  • Blümel W, Emmermann R, Hüser K (1979) Geowissenschaftliche Beschreibung und Deutung eines südwestafrikanischen Vulkankomplexes. S.W.A Wissenscheftlichen Gesellschaft, Windhoek.

  • Bonneau A (2016) Geochemical characterization and direct dating of rock art using radiocarbon and optically stimulated luminescence: the case study of southern Africa and the Canadian shield. PhD dissertation, Université du Québec, Montréal.

  • Bonneau A, Pearce DG, Pollard AM (2012) A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. J Archeol Sci 2(39): 287–294.

  • Bonneau A, Pearce D, Mitchell P, Staff R, Arthur C, Mallen L, Brock F, Higham T (2017) The earliest directly dated rock paintings from southern Africa: new AMS radiocarbon dates. Antiquity 4(91):322–333

    Article  Google Scholar 

  • Breuil H (1955) The white lady of the Brandberg. Trianon Press, Paris

    Google Scholar 

  • Breuil H, Boyle ME, Scherz ER, Strey RG (1960) Anibib & Omandumba, and other Erongo sites. Calouste Gulbenkian Foundation, Clairveaux.

  • Breuil H (1975) The Sphinx and White Ghost shelters and other Spitzkopje sites. Trianon Press, Paris

    Google Scholar 

  • Bu K, Cizdziel JV, Russ J (2013) The source of iron-oxide pigments used in Pecos river style rock paints. Archaeometry 55: 1088–1100.

  • Chadefaux C, Vignaud C, Menu M, Reiche I (2008) Multianalytical study of Paleolithic reindeer antler. Discovery of antler traces in Lascaux pigments by TEM. Archaeometry 50(3): 516–534.

  • Chalmin E, Farges F, Vignaud C, Susini J, Menu M, Brown GE Jr (2006) Discovery of unusual mineral in Paleolithic black pigments from Lascaux (France) and Ekain (Spain). AIP Conference Proceedings, 882, 220–2. Contributed to 13th International Conference on X-ray Absorption Fine Structure (XAFS13), 9–14 July. Stanford, CA, p 2006

    Google Scholar 

  • Chalmin E, Castets G, Delanoy J-J, David B, Barker B, Lamb L, Soufi F, Pairis S, Cersoy S, Martinetto P, Geneste J-M, Hoerlé S, Richards T, Gunn R (2016) Geochemical analysis of the painted panels at the ‘Genyornis’ rock art site, Arnhem Land, Australia. Quat Int 430:60–80

    Article  Google Scholar 

  • Chalmin E, Hoerlé S, Reiche I (2017) Taphonomy on the surface of the rock wall: rock–paint–atmosphere interactions. In: David B, McNiven IJ (eds) The Oxford Handbook of the Archeology and Anthropology of Rock Art. Oxford Handbook, http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190607357.001.0001/oxfordhb-9780190607357-e-47. Accessed 22 June 2018

  • Chalmin E, Huntley J (2017) Characterizing rock art pigments. In: David B, McNiven IJ (eds) The Oxford Handbook of the Archeology and Anthropology of Rock Art. Oxford University Press, from http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190607357.001.0001/oxfordhb-9780190607357-e-48. Accessed 22 June 2018

  • Charalambous A, Kassianidou V, Papasavvas G (2014) A compositional study of Cypriot bronzes dating to the Early Iron Age using portable X-ray fluorescence spectrometry (pXRF). J Archeol Sci 46:205–216

    Article  Google Scholar 

  • Clot A, Menu M, Walter P (1995) Manières de peindre des mains à Gargas et Tibiran, Hautes-Pyrénées. L’Anthropologie 99(2–3): 221–235.

  • Clottes J, Menu M, Walter P (1990) La préparation des peintures magdaléniennes des cavernes ariégeoises. Bulletin de la Société préhistorique française 87(6):170–192

    Article  Google Scholar 

  • Conard NJ, Breunig P, Gonska H, Marinetti G (1988) The feasibility of dating rock paintings from Brandberg, Namibia, with 14C. J Archeol Sci 15:463–466

    Article  Google Scholar 

  • Dowson TA (1994) Reading art, writing history: rock art and social change in Southern Africa. World Archeology 25(3):332–345

    Article  Google Scholar 

  • Ferretti M, Plese C, Garcia CR (2013) X-Ray fluorescence investigation of gilded and enameled silver: the case study of four medieval processional crosses from central Italy. Spectrochim Acta B 83–84:21–27

    Article  Google Scholar 

  • Fontana D, Alberghina MF, Barraco R, Basile S, Tranchina L, Brai M, Gueli A, Troja SO (2014) Historical pigments characterization by quantitative X-ray fluorescence. J Cult Herit 15:226–274

    Article  Google Scholar 

  • Frahm E, Doonan CP (2013) The technological versus methodological revolution of portable XRF in archeology. J Archeol Sci 40:1425–1434

    Article  Google Scholar 

  • Freundlich J, Schwabedissen H, Wendt W (1980) Köln Radiocarbon measurements II. Radiocarbon 22(1):68–81

    Article  Google Scholar 

  • García-Diez M, Hoffmann DL, Zilhão J, de las Heras C, Lasheras JA, Montes R, Pike AWG (2013) Uranium series dating reveals a long sequence of rock art at Altamira Cave (Santillana del Mar, Cantabria). J Archeol Sci 40:4098–4106

    Article  Google Scholar 

  • Gay M, Alfred M, Menu M, Laval E, Arias P, Ontañon R, Reiche I (2015) Paleolithic paint palettes used at La Garma Cave (Cantabria, Spain) investigated by means of combined in situ and synchrotron X-ray analytical methods. J Anal At Spectrom 30:767–776

    Article  Google Scholar 

  • Gay M, Müller K, Plassard F, Cleyet-Merle J-J, Arias P, Ontañon R, Reiche I (2016) Efficient quantification procedures for data evaluation of portable X-ray fluorescence—potential improvements for Paleolithic cave art knowledge. J Archeol Sci 12(10):878–886

    Google Scholar 

  • Goren Y, Mommsen H, Klinger J (2011) Non-destructive provenance study of cuneiform tablets using portable X-ray fluorescence (pXRF). J Archeol Sci 38:684–696

    Article  Google Scholar 

  • Green H, Gleadow A, Finch D (2017a) Characterization of mineral deposition systems associated with rock art in the Kimberley region of northwest Australia. Data in Brief 14:813–835

    Article  Google Scholar 

  • Green H, Gleadow A, Finch D, Hergt J, Ouzman S (2017b) Mineral deposition systems at rock art sites, Kimberley, Northern Australia—field observations. J Archeol Sci 14:340–352

    Google Scholar 

  • Harman J (2008): Digital enhancement of pictographs from Baja California. Trabajo presentado al Simposium Internacional de Arte Rupestre, Instituto Cubano de Antropología, Convento San Francisco de Asís, La Habana 2008.

  • Hincke M, Nys Y, Gautron J, Mann K, Rodriguez-Navarro AB, McKee MD (2012) The eggshell: structure, composition and mineralization. Front Biosci 1(17):1266–1280

    Article  Google Scholar 

  • Hoffman DL, Pike AWG, García-Diez M, Pettitt PB, Zilhão J (2016) Methods for U-series of CaCO3 crusts associated with Paleolithic cave art and application to Iberian sites. Quat Geochronol 36:104–119

    Article  Google Scholar 

  • Hoffmann DL, Utrilla P, Bea M, Pike AWG, García-Diez M, Zilhão J, Domingo R (2017) U-series dating of Paleolithic rock art at Fuente del Truncho (Aragón, Spain). Quat Int 432: 50–58.

  • Hoffmann DL, Standish CD, García-Diez M, Pettit PB, Milton JA, Zilhão J, Alcolea-González JJ, Cantalejo-Duarte P, Collado H, de Balbín R, Lorblanchet M, Ramos-Muñoz J, Weniger GCh, Pike AWG (2018) U–Th dating of carbonate crust reveals Neanderthal origin of Iberian cave art. Science 359(6378): 912–915.

  • Huntley J (2012) Taphonomy or paint recipe: in situ portable x-ray fluorescence analysis of two anthropomorphic motifs from the Woronora Plateau, New South Wales. Aust Archeology 75:78–94

    Article  Google Scholar 

  • Huntley J (2015) Looking up and looking down: pigment chemistry as a chronological marker in the Sydney Basin Rock Art Assemblage, Australia. Rock Art Res 32:131–145

    Google Scholar 

  • Huntley J, Galamban CF (2016) The material scientific investigation of rock art: contributions from non-invasive X-ray techniques. In: Bednarik RG, Fiore D, Basile M, Kumar G, Huisheng T (ed) Palaeoart and materiality: the scientific study of rock art, 1st edn. Archaeopress, Oxford, pp. 41–58.

  • Huntley J, Aubert M, Ross J, Brand HEA, Morwood MJ (2013) One color, (at least) two minerals: a study of Mulberry rock art pigment and a Mulberry pigment ‘quarry’ from the Kimberley, Northern Australia. Archaeometry 57:77–99

    Article  Google Scholar 

  • Huntley J, Westaway K, Gore D, Aubert M, Ross J, Morwood MJ (2016) Non-destructive or noninvasive? The potential effect of X-ray fluorescence spectrometers on luminescence age estimates of archeological samples. Geoarchaeology 31: 592–602.

  • Huntley J, George S, Sutton MJ, Taçon P (2018) Second-hand? Insights into the age and “authenticity” of colonial period rock art on the Sunshine Coast, Queensland, Australia. J Archeol Sci 17:163–172

    Google Scholar 

  • Jacobson L, Pineda CA, Morris D, Peisach M, Pillay AE (1994) A preliminary report on the PIXE analysis of ostrich eggshell and its potential for provenience studies in southern Africa. In: Demirci S, Özer AM, Summers GD (ed) Archaeometry 94: proceedings of the 29th International Symposium on Archaeometry. Tubitak, Ankara, pp. 273–278.

  • Koenig CW, Castañeda AM, Boyd CE, Rowe MW, Steelman KL (2014) Portable X-ray fluorescence spectroscopy of pictographs: a case study from the lower Pecos canyonlands, Texas. Archaeometry 56:168–186

    Article  Google Scholar 

  • Lenssen-Erz T (1996) Perceptions du cadre écologique et ses expressions métaphoriques dans l’art rupestre du Brandberg (Namibie). L’Anthropologie 100(2/3):457–472

    Google Scholar 

  • Lenssen-Erz T (1997) Metaphors of intactness of environment in Namibian rock paintings. In: Faulstich P (ed) Rock art as visual ecology. American Rock Art Research Association, Tucson AZ, pp. 43–54.

  • Lewis-Williams JD (1972) The syntax and function of the Giant’s Castle rock paintings. South Afr Archeol Bull 27:49–65

    Article  Google Scholar 

  • Lewis-Williams JD (1974) Re-thinking the South African rock art. Origini 8:229–257

    Google Scholar 

  • Lewis-Williams JD (1975) The Dakensberg rock paintings as an expression of religious thought. In: Anati E, Les religions de la préhistoire. Centro Camuno di Studi Preistorici, Capo di Ponte.

  • Lewis-Williams JD (1980) Ethnography and iconography: aspects of southern San thought and art. Man 15:467–482

    Article  Google Scholar 

  • Lewis-Williams JD (1981) Believing and seeing: symbolic meanings in southern San rock art. Academic Press, London

    Google Scholar 

  • Loendorf CR, Loendorf LL (2013) Analyzing red pictographs with portable X-ray fluorescence. Am Indian Rock Art 39:143–150

    Google Scholar 

  • López-Montalvo E, Villaverde V, Roldán C, Murcia S, Badal E (2014) An approximation to the study of black pigments in Cova Remigia (Castellón, Spain). Technical and cultural assessments of the use of carbon-based black pigments in Spanish Levantine Rock Art. J Archeol Sci 12(52):535–545

    Article  Google Scholar 

  • Maddhusudan Mehta J, McCall G, Marks T, Enloe J (2017) Geochemical source evaluation of archeological chert from the Carson mounds site in northwestern Mississippi using portable X-ray fluorescence (pXRF). J Archeol Sci 11:381–389

    Google Scholar 

  • Mazel AD, Watchman AL (2003) Dating rock paintings in the Ukhahlamba-Drakensberg and the Biggarsberg, KwaZulu-Natal (South Africa). South Afr Humanit 15:59–73

    Google Scholar 

  • McDonald J, Steelman KL, Veth P, Mackey J, Loewen J, Thurber CR, Guilderson TP (2014) Results from the first intensive dating program for pigment art in the Australian arid zone: insights into recent social complexity. J Archeol Sci 46:195–204

    Article  Google Scholar 

  • Menu M, Walter P (1996) Les rythmes de l’art préhistorique. Techné 3:11–23

    Google Scholar 

  • Nankela AM (2015) Rock art research in Namibia: a synopsis. Afr Stud 24(1):39–55

    Google Scholar 

  • Nankela AM (2017) Rock art and landscape: an empirical analysis in the content, context and distribution of the rock art sites in Omandumba East and West, Erongo Region Namibia. PhD dissertation. In: Universidade de Tomar

    Google Scholar 

  • Newman B, Loendorf L (2005) Portable X-ray fluorescence analysis of rock art pigments. Plains Anthropol 50(195):277–283

    Article  Google Scholar 

  • Nuevo MJ, Sánchez AM, Oliveira C, (de) Oliveira J (2012) In situ energy dispersive X-ray fluorescence analysis of rock art pigments from the ‘Abrigo dos Gaivões’ and ‘Igreja dos Mouros’ caves (Portugal). X-Ray Spectrom 41:1–5

    Article  Google Scholar 

  • Olivares M, Castro K, Corchón MS, Gárate D, Murelaga X, Sarmiento A, Etxebarria N (2013) Non-invasive portable instrumentation to study Paleolithic rock paintings: the case of La Peña Cave in San Roman de Candamo (Asturias, Spain). J Archeol Sci 40:1354–1360

    Article  Google Scholar 

  • Pager HL, Kuper R, Breunig P, Lenssen-Erz T (1989) The rock paintings of the Upper Brandberg. Pt. 1. Heinrich-Institut, Köln.

  • Pike AGW, Hoffmann DL, García-Diez M, Pettitt PB, Alcolea J, De Balbín R, González-Sainz C, de las Heras C, Lasheras JA, Montes R, Zilhão J (2012) U-series dating of Paleolithic art in 11 caves in Spain. Science 336:1409–1413

    Article  Google Scholar 

  • Plagnes V, Causse C, Fontugne M, Valladas H, Chazine J-M, Fage L-H (2003) Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quat Res 60:172–179

    Article  Google Scholar 

  • Pleurdeau D, Imalwa E, Détroit F, Lesur J, Veldman A, Bahain J-J, Marais E (2012) Of sheep and men: earliest direct evidence of caprine domestication in Southern Africa at Leopard Cave (Erongo, Namibia). PLoS One 7(7):e40340

    Article  Google Scholar 

  • Prinsloo LC, Barnard W, Meiklejohn I, Hall K (2008) The first Raman spectroscopic study of San rock art in the Ukhahlamba Drakensberg Park, South Africa. J Raman Spectrosc 39:646–654

    Article  Google Scholar 

  • Prinsloo LC, Tournié A, Colomban P, Paris C, Bassett ST (2013) In search of the optimum Raman/IR signatures of potential ingredients used in San/Bushman rock art paint. J Archeol Sci 40:2981–2990

    Article  Google Scholar 

  • Richter J (1991) Fackelträger. In: Richter J (ed) Studien zur Urgeschichte Namibias. Heinrich Barth-Institut, Köln, pp. 39–55.

  • Richter J (1995) Prähistorische Felskunst und Besiedlung in Zentralnamibia. Archäologische Informationen 18(1): 19–30.

  • Richter J (2002) The giraffe people: Namibia’s prehistoric artists. In: Tides of the Desert—Gezeiten der Wüste, contributions to the archeology and environmental history of Africa in honor of Rudolf Kuper. Africa Praehistorica, pp. 523–534.

  • Richter J, Vogelsang R (2008) Rock art in North-Western Central Namibia—its age and cultural background. In: Limprecht C, Biesele M (ed) Heritage and cultures in modern Namibia—in-depth views of the country. Klaus Hess Publishers, pp. 37–46.

  • Roberts A, Campbell I, Pring A, Bell G, Watchman A, Popelka-Filcoff RS, Lenehan CE, Gibson CT, Franklin N, Mannum Aboriginal Community Association Inc (2015) A multidisciplinary investigation of a rock coating at Ngaut Ngaut (Devon Downs), South Australia. Aust Archeology 80:32–39

    Article  Google Scholar 

  • Roldán C, Murcia-Mascarós S, Ferrero J, Villaverde V, López E, Domingo I, Martínez R, Guillem PM (2010) Application of field portable EDXRF spectrometry to analysis of pigments of Levantine rock art. X-Ray Spectrom 5(39):243–250

    Article  Google Scholar 

  • Roldán C, Villaverde V, Ródenas I, Novelli F, Murcia S (2013) Preliminary analysis of Paleolithic black pigments in plaquettes from the Parpalló cave (Gandı́a, Spain) carried out by means of non-destructive techniques. J Archeol Sci 1(40):744–754

    Article  Google Scholar 

  • Rudner I (1982) Khoisan pigments and paints and their relationship to rock paintings. Annals of South African Museum 87. South African Museum, Cape Town.

  • Rudner I (1983) Paints of the Khoisan rock artists. Goodwin Series 4:14–20

    Article  Google Scholar 

  • Russ J, Palma LR, Loyd DH, Boutton TW, Coy MA (1996) Origin of the whewellite-rich rock crust in the Lower Pecos region of southwest Texas and its significance to paleoclimate reconstructions. Quat Res 46:27–36

    Article  Google Scholar 

  • Russ J, Kaluarachchi WD, Drummond L, Edwards HGM (1999) The nature of a whewellite-rich rock crust associated with pictographs in southwestern Texas. Stud Conserv 44:91–103

    Google Scholar 

  • Salomon et al (2011) Stratégies spécialisées d’acquisition de pigments rouges durant le Châtelperronien de la grotte du Renne à Arcy-sur-Cure (Yonne, France). In: Paillet, P. (Ed.), Micro-analyses et datations de l’art préhistorique dans son contexte archéologique, PALEO, Paris, pp. 125–133.

  • Salomon H, Vignaud C, Coquinot Y, Beck L, Stringer C, STRIVAY D, D’Errico F (2012) Selection and heating of coloring materials in the Mousterian level of Es-Skhul (c. 100,000 years B.P., Mount Carmel, Israel). Archaeometry 54:698–722

    Article  Google Scholar 

  • Sanhidrián JL, Valladas H, Medina-Alcaide MA, Pons-Branchu E, Quiles A (2017) New perspectives for 14C dating of parietal markings using CaCO3 thin layers: an example in Nerja cave (Spain). J Archeol Sci 12:74–80

    Google Scholar 

  • (de) Sanoit J, Cambellan D, Plassard F (2005) Caractérisation in situ du pigment noir de quelques œuvres pariétales de la Grotte de Rouffignac à l’aide d’un système portable d’analyze par fluorescence X (XRF). ArchéoSciences 29:61–68

    Article  Google Scholar 

  • Shao QF, Pons-Branchu E, Zhu QP, Wang W, Valladas H, Fontugne M (2017) High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China. Quat Res 88(1):1–13

    Article  Google Scholar 

  • Scherz ER (1970) Felsbilder in Südwest-Afrika. Böhlau Verlag. In: Köln

    Google Scholar 

  • Schreiber UM, Ajagbe SD, Holzförster F, Wanke A (2010) The Geology of Area 2114: Omaruru. Explanation of Sheet 2114 Scale 1:250000. Geological Survey of Namibia, Windhoek.

  • Sepúlveda M, Gutierrez S, Carcamo J, Oyadener A, Valenzuela D, Monti I, Santoro CM (2015) In situ X-ray fluorescence analysis of rock art paintings along the coast and valleys of the Atacama desert, northern Chile. Journal of the Chilean Chemical Society 60(1): 2822–2826.

  • Shackley MS (2011) An introduction to X-ray fluorescence spectrometry (XRF) analysis in archeology. In: Shackley MS (ed) X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, New York, pp. 7–44.

  • Silva A, Mauran G, Rosado T, Mirão J, Candeias A, Carpetudo C, Caldeira AT (2017) A arte rupestre da gruta do escoural—novos dados analíticos sobre a pintura paleolítica. In: Arnaud JM, Matins A (ed) Arqueologia em Portugal/2017—Estado da Questão. Greca—Artes Graficas, pp. 1003–1019.

  • Solé VA, Papillon E, Cotte M, Walter P, Susini J (2007) A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim Acta B 62:63–68

    Article  Google Scholar 

  • Steyn R (2014) Portable X-ray fluorescence and nuclear microscopy techniques applied to the characterization of Southern African art paintings. Master dissertation, Stellenbosch University.

  • Tournié A, Prinsloo LC, Paris C, Colomban P, Smith B (2011) The first in situ Raman spectroscopic study of San rock art in South Africa: procedures and preliminary results. J Raman Spectrosc 3(42):399–406

    Article  Google Scholar 

  • Valladas H, Pons-Branchu E, Dumoulin JP, Quiles A, Sanchidrían JL, Medina-Alcaide MA (2017) U/Th and 14C crossdating of parietal calcite deposits: application to Nerja cave (Andalusia, Spain) and future perspectives. Radiocarbon 59(6):1955–1967

    Article  Google Scholar 

  • Velliky E, Reimer/Yumks R (2013) Rock paintings of Squamish valley, British Columbia: geochemical analysis of pigments using portable X-ray fluorescence spectrometry (pXRF). Am Indian Rock Art 39:131–141

    Google Scholar 

  • Vinnicombe P (1972) Myth, motive, and selection in southern African rock art. Africa 42:192–204

    Article  Google Scholar 

  • Vinnicombe P (1976) People of the eland. Natal University Press, Pietermaritzburg.

  • Wallis LA, Huntley J, Marsh M, Watchman A, Ewen A, Strano A (2017) PXRF analysis of a yellow ochre quarry and rock art motifs in the central Pilbara. J Anthropol Soc South Aust 40:134–155

    Google Scholar 

  • Ward I, Watchman AL, Cole N, Morwood M (2001) Identification of minerals in pigments from aboriginal rock art in the Laura and Kimberley regions, Australia. Rock Art Res 18:15–23

    Google Scholar 

  • Watchman A (1990) The weathering of Australian rock paintings. In: 50 ans après la découverte de Lascaux. Journée internationales d’étude sur la conservation de l’art rupestre. Dordogne (France) 20–23 aout 1990: 21–28.

  • Watchman A (1991) Age and composition of oxalate-rich crusts in the northern territory. Australia Studies in Conservation 36:24–32

    Google Scholar 

  • Wendt WE (1972) Preliminary report on an archeological research programme in South West Africa. Cimbebasia 2: 1–61.

  • Wesley D, Jones T, Reepmeyer C (2014) Pigment geochemistry as chronological marker: the case of lead pigment in rock art in the Urrmarning ‘Red Lily Lagoon’ rock art precinct, western Arnhem Land. Australian Archeology 78(1): 1–9.

  • Willcox AR (1978) An analysis of the function of rock art. S Afr J Sci 74:59–64

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Ms. and Mr. Rüst and their family for their kind permission to access and analyze the rock art sites located on their farm. The authors also thank the manager of the Ai-Aiba lodge for allowing the in situ analyses of Rain Cloud paintings.

The authors wish to express their sincere gratitude to the National Heritage Council of Namibia for allowing these analyses according to the permit 11/2015 renewed and extended with the renewal permit 04/2017 given to D.P.

The authors also thank the National Museum of Namibia and the French embassy in Namibia for their support to conduct the present study.

The French Ministry of Foreign Affairs supported this work through the funding of the MANAM project.

The authors also thank the LaBex BCDiv (Biological and Cultural Diversity) for the subsidy granted to the project “Dynamique des peuples en Namibie à l’Holocène—NAMIBIE (Windhoek, Erongo)” at the origin of the present investigation.

The authors also thank Sorbonnes Universités for financial support through the Chaire Polyre funding the PhD project of G.M., and the APaNam project funded by Observatoire des Patrimoines de Sorbonne Universités (OPUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhem Mauran.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauran, G., Lebon, M., Détroit, F. et al. First in situ pXRF analyses of rock paintings in Erongo, Namibia: results, current limits, and prospects. Archaeol Anthropol Sci 11, 4123–4145 (2019). https://doi.org/10.1007/s12520-019-00787-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-019-00787-7

Keywords

Navigation