Skip to main content
Log in

A hypothesis on different technological solutions for outdoor and indoor Roman wall paintings

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

The determination of the chemical composition of different parts of wall paintings (pigments, mortars and binders) provides information about technology of preparation of an artefact. Herein, we present a multi-methodological characterisation of wall paintings from a Roman archaeological site in Cuma, focusing on differences between an indoor (domus) and outdoor fabrication (a temple, Tempio con Portico (TCP)). Both pigments, binders and mortars were studied via a combination of destructive/μ-destructive (mass spectrometry, ionic chromatography, ICP-based techniques) and non-destructive (Raman microscopy, small-angle neutron scattering (SANS) and X-ray diffraction) methodologies. Particularly, the systematic presence of dolomite only in mortars from TCP may suggest an intentional use of such limestone for the outdoor fabrication of public interest. Differences between TCP and domus are also related to the composition of the pigment binder. In particular, the detected binders (studied by LC-MS/MS and GC-MS) were proteinaceous in the case of domus (possibly egg and animal glue) and drying oils in the case of TCP. Ultimately, our multi-methodological study provides an overall picture of the material components of paintings from fabrications with different use, proposing a hypothesis on technological choices according to conservative and destination reasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguayo T, Clavijo E, Eisner F, Ossa-Izquierdo C, Campos-Vallette MM (2011) Raman spectroscopy in the diagnosis of the wall painting history of Concepción Chile. J Raman Spectr 42:2143–2148. doi:10.1002/jrs.2978

    Article  Google Scholar 

  • Alfè M, Gargiulo V, Di Capua R, Chiarella F, Rouzaud JN, Vergara A, Ciajolo A (2012) Wet chemical method for making graphene-like films from carbon black. ACS Appl Mat & Interf 4:4491–4498. doi:10.1021/am301197q

    Article  Google Scholar 

  • Allrogen Bedel A (1979). La Pittura. In Zevi F (ed) Pompei ‘79, raccolta di studi per il decimonono anniversario dell’eruzione vesuviana, Napoli, 130–144

  • Bakiler M, Kırmızı B, Ormancı Öztürk Ö, Boso Hanyalı Ö, Dağ E, Çağlar E, Köroğlu G (2016) Material characterization of the late Roman wall painting samples from Sinop Balatlar church complex in the black sea region of Turkey. Microchem J 126:263–273. doi:10.1016/j.microc.2015.11.050

    Article  Google Scholar 

  • Baraldi P, Bonazzi A, Giordani N, Paccagnella F, Zannini P (2006) Analytical characterization of Roman plasters of the Domus Farini in Modena. Archaeometry 48:481–499

    Article  Google Scholar 

  • Baraldi P, Baraldi C, Curina R, Tassi L, Zannini P (2007) A micro-Raman archaeometric approach to Roman wall paintings. Vibr Spectr 43:420–426. doi:10.1016/j.vibspec.2006.04.029

    Article  Google Scholar 

  • Bersani D, Lottici PP (2016) Raman spectroscopy of minerals and mineral pigments in archaeometry. J Raman Spectr 47:499–530. doi:10.1002/jrs.4914

    Article  Google Scholar 

  • Beyen HG (1938) Die pompejanische Wanddekorationvon zweiten bis zum vierten Stil I-II. Den Haag 1938:1960

    Google Scholar 

  • Cagnana A (2000) Archeologia dei materiali da costruzione, Mantova

  • Caputo P, Cavassa L (2009) La fabrication du bleu égyptien à Cumes. In: Artisanats antiques d’Italie et de Gaule. Mélanges offerts à Maria Francesca Buonaiuto, Napoli, pp. 169–179

    Google Scholar 

  • Chamritski I, Burns G (2005) Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J Phys Chem 109:4965–4968. doi:10.1021/jp048748h

    Article  Google Scholar 

  • Ciarallo A (1997) I colori nelle pitture dell’antica Pompei. In Pompeii–Picta Fragmenta, Torino 1997:70–71

    Google Scholar 

  • Clark RJH, Gibbs PJ, Seddon KR, Brovenko NM, Petrosyan YA (1997) Non-destructive in situ identification of cinnabar on ancient chinese manuscripts. J Raman Spectr 28:91–94. doi:10.1002/(SICI)1097-4555(199702)28:2

    Article  Google Scholar 

  • Colombini MP, Modugno F (2009) Organic mass spectrometry in art and archaeology. John Wiley & Sons, Ltd. ISBN: 978–0–470-51703-1

  • Coppola R, Lapp A, Magnani M, Valli M (2002) Small angle neutron scattering investigation of microporosity in marbles. Appl Phys A Mater Sci Process 74:s1066–s1068. doi:10.1007/s003390201679

    Article  Google Scholar 

  • D’Agostino B (2008) Cuma. In Zevi F et al (eds), Museo Archeologico dei Campi Flegrei. Catalogo Generale. Cuma, Mondadori Electa, Napoli, pp 53–64.

  • De Faria DLA, Lopes FN (2007) Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vibr Spectr 45:117–121. doi:10.1016/j.vibspec.2007.07.003

    Article  Google Scholar 

  • Denecker A, Schudel W, Van Bos M, Wouters H, Bergmans A, Vandenabeele P, Moens L (2010) In situ investigations of vault paintings in the Antwerp cathedral. Spectrochim Acta A Mol Biomol Spectrosc 75:511–519. doi:10.1016/j.saa.2009.10.032

    Article  Google Scholar 

  • Duran A, De Haro MCJ, Perz-Rodriguez JL, Franquelo ML, Herrera LK, Justo A (2010) Determination of pigments and binders in Pompeian wall paintings using synchrotron radiation, high-resolution X-ray powder diffraction and conventional spectroscopy, chromatography. Archaeometry 52:286–307. doi:10.1111/j.1475-4754.2009.00478.x

    Article  Google Scholar 

  • Gasparri C (2008) La romanizzazione. La città romana. In Zevi F et al (eds), Museo Archeologico dei Campi Flegrei. Catalogo Generale. Cuma, Mondadori Electa, Napoli, pp 53–64

  • Gelzo M, Grimaldi M, Vergara A, Severino V, Chambery A, Dello Russo A, Piccioli C, Corso G, Arcari P (2014) Comparison of binder composition in Pompeian wall painting styles from insula Occidentalis. Chem Central J 8:65. doi:10.1186/s13065-014-0065-0

    Article  Google Scholar 

  • Giordano R, Teixeira J, Triscari M, Wanderlingh U (2007) Porosimetric and particle-size measurements by small-angle neutron scattering. Eur J Mineral 19:223–228. doi:10.1127/0935-1221/2007/0019-1705

    Article  Google Scholar 

  • Greco G (2007) Il tempio con portico: relazione preliminare delle ricerche effettuate tra il 1994 ed il 2001. In Gasparri C, Greco G, (eds) Cuma. Il Foro. Quaderni del Centro Studi Magna Grecia 5. Studi Cumani 1,Naus Editoria, Pozzuoli, pp 27–48

  • Greco G (2009) Modalità di occupazione, in età arcaica, nell’area del Foro di Cuma. In Gasparri C, Greco G, (eds) Cuma. Indagini archeologiche e nuove ricerche Quaderni del Centro Studi Magna Grecia 7. Studi Cumani 2, Naus Editoria, Pozzuoli, pp 11–42

  • Greco G et al (2010) Pithecusa e Cuma: dinamiche commerciali tra VIII e VI secolo A.C. nel territorio campano. In Panvini R et al, Traffici, commerce e vie di distribuzione nel Mediterraneo tra Protostoria e V A.C. secolo, Gela 2010, pp 205–242

  • Hanesch M (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys J Int 177:941–948. doi:10.1111/j.1365-246X.2009.04122.x

    Article  Google Scholar 

  • Higgins JS, Benoit E, (1997) Polymer and neutron scattering, Clarendon Press Oxford. ISBN-13: 978–0198500636

  • Marey Mahmoud HH (2012) A multi-analytical approach for characterizing pigments from the tomb of Djehutyemhab(TT194), Elqurna necropolis, Upper Egypt. Archeometriai Műhely 3:205–214. ISSN 1786-271X

  • Jubb AM, Allen HC (2010) Vibrational cpectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl Mater Interfaces 2:2804–2812. doi:10.1021/am1004943

    Article  Google Scholar 

  • Junmin S, Zeguang W, Hongfei C, Zhanjun Z, Ray LF (2014) A Raman spectroscopic comparison of calcite and dolomite. Spectrochim Acta A Mol Biomol Spectrosc 117:158–162. doi:10.1016/j.saa.2013.08.014

    Article  Google Scholar 

  • Lluveras A, Bonaduce I, Andreotti A, Colombini MP (2010) GC/MS analytical procedure for the characterization of glycerolipids, natural waxes, terpenoid resins, proteinaceous and polysaccharide materials in the same paint microsample avoiding interferences from inorganic media. Anal Chem 82:376–386. doi:10.1021/ac902141m

    Article  Google Scholar 

  • Marey Mahmoud HH (2011) A preliminary investigation of ancient pigments from the mortuary temple of setii, el-qurna (Luxor, Egypt). Mediter Archaeol & Archaeom 11:99–106

    Google Scholar 

  • Mau A (1892) Geschichte der dekorativen Wandmalerei in Pompeij, Berlin, 1892

  • Mazzocchin GA, Vianello A, Minghelli S, Rudello D (2010) Analysis of Roman wall paintings from the Thermae of Iulia Concordia. Archaeometry 52:644–655

    Google Scholar 

  • Mele A (2008) I Campi Flegrei: tra Cuma, Sanniti e Romani. In Zevi F et al (eds), Museo Archeologico dei Campi Flegrei. Catalogo Generale. Cuma, Mondadori Electa, Napoli, pp 31–52

  • Ospitali F, Bersani D, Di Lonardo G, Lottici PP (2008) “Green earths”: vibrational and elemental characterization of glauconites, celadonites and historical pigments. J Raman Spectrosc 39:1066–1073. doi:10.1002/jrs.1983

    Article  Google Scholar 

  • Shebanova ON, Lazor P (2003) Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation. J Raman spectr 34:845–852. doi:10.1002/jrs.1056

    Article  Google Scholar 

  • Smith DC, Bouchard M, Lorblanchet M (1999) An initial Raman microscopic investigation of prehistoric rock art in caves of the Quercy District, S.W. France. J Raman Spectr 30:347–354. doi:10.1002/(SICI)1097-4555(199904)30:4<347::AID-JRS379>3.0.CO;2-A

    Article  Google Scholar 

  • Tomeo A (2007) Il Tempio con Portico. Lettura stratigrafica del Saggio 11.In Greco G, Gasparri C (eds) Cuma. Il Foro. Quaderni del Centro Studi Magna Grecia 5. Studi Cumani 1, pp 49–76

  • Triolo F, Triolo A, Agamalian M, Lin J-S, Heenan RK, Lucido G, Triolo R (2000) Fractal approach in petrology: combining ultra small angle, small angle and intermediate angle neutron scattering. J Appl Crystallogr 33:863–866. doi:10.1107/S0021889899014910

    Article  Google Scholar 

  • Vandenabeele P, Edwards HGM, Moens L (2007) A decade of Raman spectroscopy in art and archaeology. Chem Rev 107:675–686. doi:10.1021/cr068036i

    Article  Google Scholar 

  • Vinciguerra R, Galano E, Vallone F, Greco G, Vergara A, Bonaduce I, Marino G, Pucci P, Amoresano A, Birolo L (2015a) Deglycosylation step to improve the identification of egg proteins in art samples. Anal Chem 87:10178–10182. doi:10.1021/acs.analchem.5b02423

    Article  Google Scholar 

  • Vinciguerra R, De Chiaro A, Pucci P, Marino G, Birolo L (2015b) Proteomic strategies for cultural heritage: form bones to paintings. Microchem J 126:341–348. doi:10.1016/j1

Download references

Acknowledgments

PON03PE_00163_1 is acknowledged for the financial support and “Soprintendenza Archeologia della Campania”, Dr. Campanelli, for the authorisation. Prof. Ghiara and Dr. Rossi (Royal Museum of Mineralogy, Napoli) are acknowledged for providing the references of dolomite and calcite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Vergara.

Electronic supplementary material

ESM 1

(DOCX 3730 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Birolo, L., Tomeo, A., Trifuoggi, M. et al. A hypothesis on different technological solutions for outdoor and indoor Roman wall paintings. Archaeol Anthropol Sci 9, 591–602 (2017). https://doi.org/10.1007/s12520-016-0408-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-016-0408-y

Keywords

Navigation