Skip to main content

Advertisement

Log in

Body mass estimation in skeletal samples using the hybrid approach: the effect of population-specific variations and sexual dimorphism

  • Original Paper
  • Published:
Archaeological and Anthropological Sciences Aims and scope Submit manuscript

Abstract

Body mass is estimated from skeletal records with low accuracy, and it is expected that population-specific equations derived by a hybrid approach may help to reduce the error in body mass estimates. We used 204 individuals from five Central European Early Medieval sites to test the effect of population-specific femoral head breadth equations on the accuracy of body mass estimates. The baseline for living body mass was computed using the biiliac breadth and stature. We also analyzed the agreement of five general femoral head techniques that are used in body mass estimation (Elliott et al. (Archaeol Anthropol Sci 1–20, 2015b; Grine et al. (Am J Phys Anthropol 97:151–185, 1995); McHenry (Am J Phys Anthropol 87:407–431, 1992); Ruff et al. (Am J Phys Anthropol 148:601–617, 2012); Ruff et al. (Am J Phys Anthropol 86:397, 1991)). Our results support previous findings showing that body mass is predicted with lower accuracy than stature, even when population-specific equations are derived. However, the population-specific approach increases the agreement with the body mass estimated from the biiliac breadth and stature, particularly when sex-specific equations are used. Thus, our results advocate for the employment of sex-specific equations when possible and show that the possibility of deriving equation for each sex separately is the main advantage of the population-specific approach. The best agreement among the body mass techniques in the Central European Early Medieval samples was observed using the femoral head equations reported by Ruff et al. (Am J Phys Anthropol 148:601–617, 2012) and McHenry (Am J Phys Anthropol 87:407–431, 1992), whereas other studied equations provided lower agreement. The particularly low performance obtained using the technique reported by Elliott et al. (2015b) questioned the use of their equations to estimate body masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  • Adams BJ (2007) Forensic anthropology. Chelsea House Publishers, New York

    Google Scholar 

  • Aiello LC, Wood BA (1994) Cranial variables as predictors of hominine body mass. Am J Phys Anthropol 95:409–426

    Article  Google Scholar 

  • Atamturk D, Duyar I (2008) Age-related factors in the relationship between foot measurements and living stature and body weight. J Forensic Sci 53:1296–1300

    Google Scholar 

  • Auerbach BM, Ruff CB (2004) Human body mass estimation: a comparison of “morphometric” and “mechanical” methods. Am J Phys Anthropol 125:331–342. doi:10.1002/ajpa.20032

    Article  Google Scholar 

  • Berger AA, May R, Renner JB, Viradia N, Dahners LE (2011) Surprising evidence of pelvic growth (widening) after skeletal maturity. J Orthopaed Res 29:1719–1723

    Article  Google Scholar 

  • Berrington de Gonzalez A et al (2010) Body-mass index and mortality among 1.46 million white adults. N Engl J Med 363:2211–2219

    Article  Google Scholar 

  • Bigoni L, Krajíček V, Velemínská J, Sládek V, Velemínský P (2013) Skull shape asymmetry and the socioeconomic structure of early medieval Central European society. Am J Phys Anthropol 150:349–364

    Article  Google Scholar 

  • 1Bogin B, Varela-Silva MI (2010) Leg length, body proportion, and health: a review with a note on beauty. Int J Environ Res Public Health 7:1047–1075

  • Bohonak AJ (2002) RMA: software for reduced major axis regression, 1.14 edn. San Diego State University, San Diego

    Google Scholar 

  • Bräuer G (1988) Osteometrie. In: Knussman R (ed) Anthropologie: Handbuch der Vergleichenden Biologie des Menschen, Ban 1; Wesen und Methoden der Anthropologie, Teil 1. Wissenschaftstheorie, Geschichte, Morphologische Methoden. Gustav Fischer Verlag, Stuttgart, pp. 160–232

    Google Scholar 

  • Brooks ST, Suchey JM (1990) Skeletal age determination based on the os pubis: a comparison of the Acsádi-Nemeskéri and Suchey-Brooks Methods. Hum Evol 5:227–238

    Article  Google Scholar 

  • Bruzek J (2002) A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117:157–168. doi:10.1002/ajpa.10012

    Article  Google Scholar 

  • Buckberry JL, Chamberlain AT (2002) Age estimation from the auricular surface of the ilium: a revised method. Am J Phys Anthropol 119:231–239. doi:10.1002/ajpa.10130

    Article  Google Scholar 

  • Byard RW (2012) The complex spectrum of forensic issues arising from obesity. Forensic science, medicine, and pathology 8:402–413

    Article  Google Scholar 

  • Delson E, Terranova CJ, Jungers WL, Sargis EJ, Jablonski NG, Dechow PC (2000) Body mass in Cercopithecidae (Primates, Mammalia): estimation and scaling in extinct and extant taxa. Anthropological Papers of the American Museum of Natural History: 1–159

  • Distelberger A (2004) Österreichs Awarinnen: Frauen aus Gräbern des 7. und 8. Jahrhunderts. Selbstverl. d. NÖ Inst. für Landeskunde, St. Pölten

    Google Scholar 

  • Elliott M, Kurki H, Weston DA, Collard M (2015a) Estimating body mass from postcranial variables: an evaluation of current equations using a large known-mass sample of modern humans. Archaeol Anthropol Sci 1–16

  • Elliott M, Kurki H, Weston DA, Collard M (2015b) Estimating body mass from skeletal material: new predictive equations and methodological insights from analyses of a known-mass sample of humans. Archaeol Anthropol Sci 1–20. doi:10.1007/s12520-015-0252-5

  • Evans WJ, Campbell WW (1993) Sarcopenia and age-related changes in body composition and functional capacity. J Nutr 123:465–468

    Article  Google Scholar 

  • Eveleth PB, Tanner JM (1990) Worldwide variation in human growth. 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ferembach D, Schwidetzky I, Stloukal M (1980) Recommendation for age and sex diagnoses of skeleton. J Hum Evol 9:517–549

    Article  Google Scholar 

  • Formicola V (1993) Stature reconstruction from long bones in ancient population samples: an approach to the problem of its reliability. Am J Phys Anthropol 90:351–358. doi:10.1002/ajpa.1330900309

    Article  Google Scholar 

  • Froehlich J (1970) Migration and the plasticity of physique in the Japanese-Americans of Hawaii. Am J Phys Anthropol 32:429–442

    Article  Google Scholar 

  • Grine FE, Jungers WL, Tobias PV, Pearson OM (1995) Fossil Homo femur from Berg Aukas, Northern Namibia. Am J Phys Anthropol 97:151–185. doi:10.1002/ajpa.1330970207

    Article  Google Scholar 

  • Hartwig-Scherer S (1993) Body weight prediction in early fossil hominids: towards a taxon-“independent” approach. Am J Phys Anthropol 92:17–36

    Article  Google Scholar 

  • Heinrich W (2001) Zwentendorf, ein Gräberfeld aus dem 10.-11. Jahrhundert: anthropologische Auswertung vol 42. Mitteilungen der Prähistorischen Kommission. Verlag der Österreichischen Akademie der Wissenschaften, Wien

    Google Scholar 

  • Hiernaux J (1985) A comparison of the shoulder-hip-width sexual dimorphism in sub-Saharan Africa and Europe. In: Ghesquiere J, Martin RD, Newcombe F (eds) Human sexual dimorphism. Taylor and Francis, Philadelphia, pp. 191–206

    Google Scholar 

  • Hora M, Soumar L, Strániková K, Michálek T, Sládek V (2012) Influence of body mass and lower limb length on knee flexion angle during walking in humans. Folia Zool 61:330–339

    Article  Google Scholar 

  • Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MAF (2002) Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 76:473–481

    Article  Google Scholar 

  • İşcan MY (2005) Forensic anthropology of sex and body size. Forensic Sci Int 147:107–112

    Article  Google Scholar 

  • Jungers WL (1988) New estimation of body size in asutralopithecines. In: Grine FE (ed) Evolutionary history of the “robust” australopithecines. Aldine de Gruyter, New York, pp. 115–125

    Google Scholar 

  • Junno J-A, Niskanen M, Ruff C, Holt B, Sladek V, Berner M, Maijanen H (2015) The effect of age on body mass estimation using the stature/bi-iliac method. Am J Phys Anthropol 156:181–182

    Article  Google Scholar 

  • Kappelman J (1996) The evolution of body mass and relative brain size in fossil hominids. J Hum Evol 30:243–276

    Article  Google Scholar 

  • Katzmarzyk PT, Leonard WR (1998) Climatic influences on human body size and proportions: ecological adaptations and secular trends. Am J Phys Anthropol 106:483–503

    Article  Google Scholar 

  • Katzmarzyk PT, Malina RM (1999) Body size and physique among Canadians of First Nation and European ancestry. Am J Phys Anthropol 108:161–172

    Article  Google Scholar 

  • Krishan K (2008) Establishing correlation of footprints with body weight—forensic aspects. Forensic Sci Int 179:63–69

    Article  Google Scholar 

  • Krogman WM, Iscan MY (1986) The human skeleton in forensic medicine. 2nd edn. C.C. Thomas, Springfield, Ill., U.S.A

    Google Scholar 

  • Kurki HK, Ginter JK, Stock JT, Pfeiffer S (2010) Body size estimation of small-bodied humans: applicability of current methods. Am J Phys Anthropol 141:169–180. doi:10.1002/ajpa.21127

    Google Scholar 

  • Lieberman DE, Devlin MJ, Pearson OM (2001) Articular area responses to mechanical loading: effects of exercise, age, and skeletal location. Am J Phys Anthropol 116:266–277. doi:10.1002/ajpa.1123

    Article  Google Scholar 

  • Lorkiewicz-Muszyńska D, Przystańska A, Kociemba W, Sroka A, Rewekant A, Żaba C, Paprzycki W (2013) Body mass estimation in modern population using anthropometric measurements from computed tomography. Forensic Sci Int 231:405 e401-405. e406

    Google Scholar 

  • Lovejoy CO (1985) Dental wear in the Libben population: its functional pattern and role in the determination of adult skeletal age at death. Am J Phys Anthropol 68:47–56

    Article  Google Scholar 

  • Macháček J (2007) Early medieval centre in Pohansko near Břeclav/Lundeburg: Munitio, emporium or palatium of the rulers of Moravia. In: Hennig J (ed) Post-Roman towns, trade and settlement in Europe and Byzantium: the heirs of the Roman West, vol 1. Walter de Gruyter, Berlin, pp. 473–498

    Google Scholar 

  • Macháček J (2010) The rise of medieval towns and states in East Central Europe: early medieval centres as social and economic systems. Brill, Leiden

    Book  Google Scholar 

  • Macháček J (2011) Fünfzig Jahre archäologische Ausgrabungen in Pohansko bei Břeclav. In: Macháček J, Ungerman Š (eds) Frühgeschichtliche Zentralorte in Mitteleuropa. Verlag Dr. Rudolf Habelt GmbH, Bonn, pp. 15–33

    Google Scholar 

  • Maijanen H (2009) Testing anatomical methods for stature estimation on individuals from the W. M. Bass donated skeletal collection. J Forensic Sci 54:746–752. doi:10.1111/j.1556-4029.2009.01053.x

    Article  Google Scholar 

  • Maijanen H, Jeong Y (2015) Potential caveats in body mass estimation: comparison of reported living and measured cadaver weight. Am J Phys Anthropol 156:211–211

    Google Scholar 

  • Manson JE et al (1995) Body weight and mortality among women. N Engl J Med 333:677–685

    Article  Google Scholar 

  • May SE (2011) The effects of body mass on cremation weight. J Forensic Sci 56:3–9

    Article  Google Scholar 

  • McHenry HM (1974) How large were the australopithecines? Am J Phys Anthropol 40:329–340

    Article  Google Scholar 

  • McHenry HM (1988) New estimates of body weight in early hominids and their significance to encephalization and megadontia in “robust” australopithecines. In: Grine FE (ed) Evolutionary history of the “robust” australopithecines. Aldine de Gruyter, New York, pp. 133–148

    Google Scholar 

  • McHenry HM (1992) Body size and proportions in early hominids. Am J Phys Anthropol 87:407–431. doi:10.1002/ajpa.1330870404

    Article  Google Scholar 

  • Molnar S (1998) Human variation: race, types and ethnic groups. Prentice-Hall, New Jersey

    Google Scholar 

  • Murail P, Bruzek J, Braga J (1999) A new approach to sexual diagnosis in past populations. Practical adjustments from Van Vark’s procedure. Int J Osteoarch 9:39–53. doi:10.1002/(sici)1099-1212(199901/02)9:1<39::aid-oa458>3.3.co;2-m

    Article  Google Scholar 

  • Niskanen M, Junno J (2004) The reconstruction of body size and shape of the Paleolithic period Europeans. In: Herva V-P (ed) People, material culture and environment in the north. Gummerus, Oulu, pp. 310–320

    Google Scholar 

  • Plavcan JM (2001) Sexual dimorphism in primate evolution. Yearb Phys Anthropol 44:25–53

    Article  Google Scholar 

  • Poláček L (2008) Great Moravia, the power centre at Mikulčice and the issue of the socioeconomic structure. In: Velemínský P, Poláček L (eds) Studien zum Burgwall von Mikulčice VIII. Archeologický ústav, Brno, pp. 11–44

    Google Scholar 

  • Raxter MH, Auerbach BM, Ruff CB (2006) Revision of the fully technique for estimating statures. Am J Phys Anthropol 130:374–384. doi:10.1002/ajpa.20361

    Article  Google Scholar 

  • Raxter MH, Ruff CB, Auerbach BM (2007) Technical note: revised fully stature estimation technique. Am J Phys Anthropol 133:817–818. doi:10.1002/ajpa.20588

    Article  Google Scholar 

  • Roberts DF (1953) Body weight, race and climate. Am J Phys Anthropol 11:533–558

    Article  Google Scholar 

  • Rosenberg KR, Zune L, Ruff CB (2006) Body size, body proportions, and encephalization in a Middle Pleistocene archaic human from northern China. PNAS 103:3552–3556. doi:10.1073/pnas.0508681103

    Article  Google Scholar 

  • Ruff CB (1991) Climate, body size and body shape in hominid evolution. J Hum Evol 21:81–105

    Article  Google Scholar 

  • Ruff CB (1994) Morphological adaptation to climate in modern and fossil hominids. Yearb Phys Anthropol 37:65–107

    Article  Google Scholar 

  • Ruff CB (2000) Body mass prediction from skeletal frame size in elite athletes. Am J Phys Anthropol 113:507–517. doi:10.1002/1096-8644(200012)113:4<507::aid-ajpa5>3.0.co;2-f

    Article  Google Scholar 

  • Ruff CB (2002) Variation in human body size and shape. Annu Rev Anthropol 31:211–232. doi:10.1146/annurev.anthro.31.040402.085407

    Article  Google Scholar 

  • Ruff CB (2010) Body size and body shape in early hominins—implications of the Gona pelvis. J Hum Evol 58:166–178. doi:10.1016/j.jhevo1.2009.10.003

    Article  Google Scholar 

  • Ruff CB, Scott WW, Liu AY-C (1991) Articular and diaphyseal remodeling of the proximal femur with changes in body mass in adults. Am J Phys Anthropol 86:397–413. doi:10.1002/ajpa.1330860306

    Article  Google Scholar 

  • Ruff CB, Trinkaus E, Walker A, Larsen CS (1993) Postcranial robusticity in homo I: temporal trends and mechanical interpretation. Am J Phys Anthropol 91:21–53

    Article  Google Scholar 

  • Ruff CB, Trinkaus E, Holliday TW (1997) Body mass and encephalization in Pleistocene Homo. Nature 387:173–176

    Article  Google Scholar 

  • Ruff CB, Niskanen M, Junno JA, Jamison P (2005) Body mass prediction from stature and bi-iliac breadth in two high latitude populations, with application to earlier higher latitude humans. J Hum Evol 48:381–392. doi:10.1016/j.jhevol.2004.11.009

    Article  Google Scholar 

  • Ruff CB et al (2006) Body size, body proportions, and mobility in the Tyrolean “iceman”. J Hum Evol 51:91–101. doi:10.1016/j.jhevol.2006.02.001

    Article  Google Scholar 

  • Ruff CB et al (2012) Stature and body mass estimation from skeletal remains in the European Holocene. Am J Phys Anthropol 148:601–617. doi:10.1002/Ajpa.22087

    Article  Google Scholar 

  • Sauer F (ed) (2013) Fundstelle Bruckneudorf. Das awarische Gräberfeld. Die archäologischen Grabungen auf der Trasse der A6. Wagner, Innsbruck

    Google Scholar 

  • Sládek V, Macháček J, Ruff CB, Schuplerová E, Přichystalová R, Hora M (2015) Population-specific stature estimation from long bones in the Early Medieval Pohansko (Czech Republic). Am J Phys Anthropol 158:312–324

    Article  Google Scholar 

  • Sládek V, Berner M, Ruff CB, Makajevová E, Velemínský P, Hora M (in prep) Central European human postcranial variation. In: Ruff CB (ed) Skeletal variation and adaptation in Europeans: Upper Paleolithic to the twentieth century. Wiley-Blackwell, New York

  • Smith RJ, Cheverud JM (2002) Scaling of sexual dimorphism in body mass: a phylogenetic analysis of Rensch’s rule in primates. Int J Primatol 23:1095–1135

    Article  Google Scholar 

  • Squyres N, Ruff CB (2015) Body mass estimation from knee breadth, with application to early hominins. Am J Phys Anthropol 158:198–208

    Article  Google Scholar 

  • Stinson S, Bogin B, Huss-Ashmore R, O’Rourke D (2000) Human biology: an evolutionary and biocultural perspective. Wiley, New York

    Google Scholar 

  • Tanner JM (1990) Foetus into man: physical growth from conception to maturity. Harvard University Press

  • Terry RJ (1940) On measuring and photographing the cadaver. Am J Phys Anthropol 26:433–447

    Article  Google Scholar 

  • Trinkaus E, Churchill SE, Ruff CB (1994) Postcranial robusticity in homo II: humeral bilateral asymmetry and bone plasticity. Am J Phys Anthropol 93:1–34. doi:10.1002/ajpa.1330930102

    Article  Google Scholar 

  • Wang H, Troy LM, Rogers GT, Fox CS, McKeown NM, Meigs JB, Jacques PF (2014) Longitudinal association between dairy consumption and changes of body weight and waist circumference: the Framingham Heart Study. Int J Obes 38:299–305

    Article  Google Scholar 

  • Will M, Stock JT (2015) Spatial and temporal variation of body size among early homo. J Hum Evol 82:15–33

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Veronika Sabolová, Simona Čerevková, Kristýna Farkašová, and Zuzana Valíková for their help with the laboratory preparation of the Pohansko sample. We are also grateful to Petr Velemínský and Maria Teschler-Nikola for access to the comparative Early Medieval collections, and we thank Margit Berner, Anna Pankowská, Jaroslav Roman, and Petra Spěváčková for their help with the comparative samples. We also thank Markku Niskanen for helpful discussions. This project was supported by Czech Grant Agency (GAČR 14-22823S: The people at the end of Great Moravia: bioarchaeology and taphonomy of the new cemetery at the northeast suburb at Pohansko (Břeclav)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Sládek.

Ethics declarations

Grant sponsorship

This study was supported by the Czech Science Foundation (GAČR: 14-22823S: The people at the end of Great Moravia: bioarchaeology and taphonomy of the new cemetery at the northeast suburb at Pohansko (Břeclav)).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sládek, V., Macháček, J., Makajevová, E. et al. Body mass estimation in skeletal samples using the hybrid approach: the effect of population-specific variations and sexual dimorphism. Archaeol Anthropol Sci 10, 833–847 (2018). https://doi.org/10.1007/s12520-016-0400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12520-016-0400-6

Keywords

Navigation