Skip to main content
Log in

Association between innate immunity gene polymorphisms and neonatal sepsis development: a systematic review and meta-analysis

  • Meta-analysis
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

The aim of this meta-analysis was to analyze all available data from studies investigating associations between polymorphisms in genes responsible for innate immunity and neonatal sepsis development.

Methods

A comprehensive literature search, reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses-S guidelines, was performed with no language restriction. Studies derived using the PICO (population, intervention, comparison and outcomes) strategy, with data on the genotype distribution for innate immunity gene polymorphisms in newborns with and without sepsis. Data were analyzed using Review Manager. The Cochran–Mantel–Haenszel test was used to calculate odds ratios with 95% confidence intervals. Heterogeneity was tested using the I2 index.

Results

From a total of 9428 possibly relevant articles, 33 qualified for inclusion in this systematic review. According to the STrengthening the REporting of Genetic Association Studies, 23 studies were found to be of moderate quality, while 10 were of low quality. The results showed an association of the mannose-binding lectin (MBL) exon 1 genetic polymorphism with the risk of culture-proven sepsis. Toll-like receptor (TLR) 4 rs4986791 genotype distribution suggests its association with the increased risk of culture-proven sepsis. The certainty of evidence per GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) varied from very low to low. Publication bias was not detected.

Conclusions

Out of the 11 investigated single-nucleotide polymorphisms, this meta-analysis found a possible association between the risk for culture-proven sepsis and MBL exon 1 and TLR4 rs4986791 polymorphisms. There is an evident need for larger well-designed, multicentric observational studies investigating inflammatory gene polymorphisms in neonatal sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All additional data are available in supplementary material of the manuscript.

References

  1. Oza S, Lawn JE, Hogan DR, Mathers C, Cousens SN. Neonatal cause-of death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bull World Health Organ. 2015;93:19–28.

    Article  PubMed  Google Scholar 

  2. McGovern M, Giannoni E, Kuester H, Turner MA, van den Hoogen A, Bliss JM, et al. Challenges in developing a consensus definition of neonatal sepsis. Pediatr Res. 2020;88:14–26.

    Article  PubMed  Google Scholar 

  3. Glodstein B, Giroir B, Randolph A, International Consensus Conference on Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6:2–8.

    Article  Google Scholar 

  4. Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, Kurosawa S, Remick DG. The pathogenesis of sepsis. Annu Rev Pathol. 2011;6:19–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chantratita N, Tandhavanant S, Seal S, Wikraiphat C, Wongsuvan G, Ariyaprasert P, et al. TLR4 genetic variation is associated with inflammatory responses in Gram-positive sepsis. Clin Microbiol Infect. 2017;23:47.e1-7.e10.

    Article  CAS  Google Scholar 

  6. He J, Zhang Q, Zhang W, Chen F, Zhao T, Lin Y, et al. The interleukin-27-964A>G polymorphism enhances sepsis-induced inflammatory responses and confers susceptibility to the development of sepsis. Crit Care. 2018;22:248.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen Y, Hu Y, Song Z. The association between interleukin-6 gene -174G/C single nucleotide polymorphism and sepsis: an updated meta-analysis with trial sequential analysis. BMC Med Genet. 2019;20:35.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abu-Maziad A, Schaa K, Bell EF, Dagle JM, Cooper M, Marazita ML, et al. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis. Pediatr Res. 2010;68:323–9.

    Article  PubMed  Google Scholar 

  9. Ahrens P, Kattner E, Köhler B, Härtel C, Seidenberg J, Segerer H, et al. Mutations of genes involved in the innate immune system as predictors of sepsis in very low birth weight infants. Pediatr Res. 2004;55:652–6.

    Article  PubMed  Google Scholar 

  10. Allam G, Alsulaimani AA, Alzaharani AK, Nasr A. Neonatal infections in Saudi Arabia: association with cytokine gene polymorphisms. Cent Eur J Immunol. 2015;40:68–77.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mustarim M, Yanwirasti Y, Jamsari J, Rukmono R, Nindrea RD. Association of gene polymorphism of bactericidal permeability increasing protein rs4358188, cluster of differentiation 14 rs2569190, interleukin 1β rs1143643 and matrix metalloproteinase-16 rs2664349 with neonatal sepsis. Open Access Maced J Med Sci. 2019;7:2728–33.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Martin SL, Desai S, Nanavati R, Colah RB, Ghosh K, Mukherjee MB. Innate immune gene polymorphisms and their association with neonatal sepsis. Infect Genet Evol. 2018;62:205–10.

    Article  CAS  PubMed  Google Scholar 

  13. Luo J, Xu F, Lu GJ, Lin HC, Feng ZC. Low mannose-binding lectin (MBL) levels and MBL genetic polymorphisms associated with the risk of neonatal sepsis: an updated meta-analysis. Early Hum Dev. 2014;90:557–64.

    Article  CAS  PubMed  Google Scholar 

  14. Srinivasan L, Swarr DT, Sharma M, Cotten CM, Kirpalani H. Systematic review and meta-analysis: gene association studies in neonatal sepsis. Am J Perinatol. 2017;34:684–92.

    PubMed  Google Scholar 

  15. Hartz A, Pagel J, Humberg A, Preuss M, Schreiter L, Rupp J, et al. The association of mannose-binding lectin 2 polymorphisms with outcome in very low birth weight infants. PLoS One. 2017;12:e0178032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hilgendorff A, Heidinger K, Pfeiffer A, Bohnert A, König IR, Ziegler A, et al. Association of polymorphisms in the mannose-binding lectin gene and pulmonary morbidity in preterm infants. Genes Immun. 2007;8:671–7 (Erratum in: Genes Immun. 2008;9:481).

    Article  CAS  PubMed  Google Scholar 

  17. Badawy M, Mosallam DS, Saber D, Madani H. Use of mannose-binding lectin gene polymorphisms and the serum MBL level for the early detection of neonatal sepsis. J Pediatr Genet. 2018;7:150–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdel-Hady H, El-Naggar M, El-Nady G, Badr R, El-Daker M. Genetic polymorphisms of IL-6-174 and IL-10-1082 in full term neonates with late onset blood stream infections. J Pediatr Infect Dis. 2009;4:357–65.

    Google Scholar 

  19. Khaertynov KS, Anokhin VA, Rizvanov AA, Daviduk YN, Lubin SA, Khaertynov Khalit S, et al. Genetic polymorphisms and bacterial infections in neonates. Bionanoscience. 2017;7:78–84.

    Article  Google Scholar 

  20. Karakaş NM, Ecevit AN, Yalçin Y, Özdemir B, Verdi H, Tekindal MA, et al. Effect of maternal and neonatal interleukin-6-174 G/C polymorphism on preterm birth and neonatal morbidity. J Matern Fetal Neonatal Med. 2018;31:1009–15.

    Article  PubMed  CAS  Google Scholar 

  21. Varljen T, Rakic O, Sekulovic G, Jekic B, Maksimovic N, Janevski MR, et al. Association between tumor necrosis factor-α promoter -308 G/A polymorphism and early onset sepsis in preterm infants. Tohoku J Exp Med. 2019;247:259–64.

    Article  CAS  PubMed  Google Scholar 

  22. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rethlefsen ML, Kirtley S, Waffenschmidt S, Ayala AP, Moher D, Page MJ, et al. PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev. 2021;10:39.

    Article  PubMed  PubMed Central  Google Scholar 

  24. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol. 2016;75:40–6.

    Article  PubMed  Google Scholar 

  25. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of Genetic Association Studies (STREGA)—an extension of the STROBE statement. Genet Epidemiol. 2009;33:581–98.

    Article  PubMed  Google Scholar 

  27. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology. 2007;18:800–4.

    Article  Google Scholar 

  28. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50:1088–101.

    Article  CAS  PubMed  Google Scholar 

  31. Harding D, Dhamrait S, Millar A, Humphries S, Marlow N, Whitelaw A, et al. Is interleukin-6 -174 genotype associated with the development of septicemia in preterm infants? Pediatrics. 2003;112:800–3.

    Article  PubMed  Google Scholar 

  32. Treszl A, Kocsis I, Szathmári M, Schuler A, Héninger E, Tulassay T, et al. Genetic variants of TNF-α, IL-1β, IL-4 receptor α-chain, IL-6 and IL-10 genes are not risk factors for sepsis in low-birth-weight infants. Biol Neonate. 2003;83:241–5.

    Article  CAS  PubMed  Google Scholar 

  33. Hedberg CL, Adcock K, Martin J, Loggins J, Kruger TE, Baier RJ. Tumor necrosis factor alpha-308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. Pediatr Infect Dis J. 2004;23:424–8.

    Article  PubMed  Google Scholar 

  34. Baier RJ, Loggins J, Yanamandra K. IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants. BMC Med. 2006;4:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Göpel W, Härtel C, Ahrens P, König I, Kattner E, Kuhls E, et al. Interleukin-6-174-genotype, sepsis and cerebral injury in very low birth weight infants. Genes Immun. 2006;7:65–8.

    Article  PubMed  CAS  Google Scholar 

  36. Schueller AC, Heep A, Kattner E, Kroll M, Wisbauer M, Sander J, et al. Prevalence of two tumor necrosis factor gene polymorphisms in premature infants with early onset sepsis. Biol Neonate. 2006;90:229–32.

    Article  CAS  PubMed  Google Scholar 

  37. Frakking FN, Brouwer N, van Eijkelenburg NK, Merkus MP, Kuijpers TW, Offringa M, et al. Low mannose-binding lectin (MBL) levels in neonates with pneumonia and sepsis. Clin Exp Immunol. 2007;150:255–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dzwonek AB, Neth OW, Thiébaut R, Gulczynska E, Chilton M, Hellwig T, et al. The role of mannose-binding lectin in susceptibility to infection in preterm neonates. Pediatr Res. 2008;63:680–5.

    Article  CAS  PubMed  Google Scholar 

  39. van der Zwet WC, Catsburg A, van Elburg RM, Savelkoul PH, Vandenbroucke-Grauls CM. Mannose-binding lectin (MBL) genotype in relation to risk of nosocomial infection in preterm neonates in the neonatal intensive care unit. Clin Microbiol Infect. 2008;14:130–5.

    Article  PubMed  Google Scholar 

  40. Reiman M, Kujari H, Ekholm E, Lapinleimu H, Lehtonen L, Haataja L, et al. Interleukin-6 polymorphism is associated with chorioamnionitis and neonatal infections in preterm infants. J Pediatr. 2008;153:19–24.

    Article  CAS  PubMed  Google Scholar 

  41. Ozgur TT, Yel L, Yigit S, Mesci L, Sanal O, Tezcan I, et al. Lack of association between TLR4 polymorphism and severe gram-negative bacterial infection in neonates. Turk J Med Sci. 2009;39:423–7.

    CAS  Google Scholar 

  42. Auriti C, Prencipe G, Inglese R, Azzari C, Ronchetti MP, Tozzi A, et al. Role of mannose-binding lectin in nosocomial sepsis in critically ill neonates. Hum Immunol. 2010;71:1084–8.

    Article  CAS  PubMed  Google Scholar 

  43. Koroglu OA, Onay H, Erdemir G, Yalaz M, Cakmak B, Akisu M, et al. Mannose-binding lectin gene polymorphism and early neonatal outcome in preterm infants. Neonatology. 2010;98:305–12.

    Article  CAS  PubMed  Google Scholar 

  44. Härtel C, Hemmelmann C, Faust K, Gebauer C, Hoehn T, Kribs A, et al. Tumor necrosis factor-α promoter -308 G/A polymorphism and susceptibility to sepsis in very-low-birth-weight infants. Crit Care Med. 2011;39:1190–5.

    Article  PubMed  CAS  Google Scholar 

  45. Özkan H, Köksal N, Çetinkaya M, Kiliç Ş, Çelebi S, Oral B, et al. Serum mannose-binding lectin (MBL) gene polymorphism and low MBL levels are associated with neonatal sepsis and pneumonia. J Perinatol. 2012;32:210–7.

    Article  PubMed  CAS  Google Scholar 

  46. Esposito S, Zampiero A, Pugni L, Tabano S, Pelucchi C, Ghirardi B, et al. Genetic polymorphisms and sepsis in premature neonates. PLoS One. 2014;9:e101248.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Sampath V, Mulrooney NP, Garland JS, He J, Patel AL, Cohen JD, et al. Toll-like receptor genetic variants are associated with Gram-negative infections in VLBW infants. J Perinatol. 2013;33:772–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Świerzko AS, Szala-Poździej A, Kilpatrick DC, Sobociński M, Chojnacka K, Sokołowska A, et al. Components of the lectin pathway of complement activation in paediatric patients of intensive care units. Immunobiology. 2016;221:657–69.

    Article  PubMed  CAS  Google Scholar 

  49. Khaertynov HS, Anokhin VA, Khasanova GR, Rizvanov AA, Davidyuk YN, Lyubin SA, et al. Genes polymorphism of innate immunity in children with neonatal sepsis. Pediatria. 2019;98:69–74.

    Article  Google Scholar 

  50. Varljen T, Sekulovic G, Rakic O, Maksimovic N, Jekic B, Novakovic I, et al. Genetic variant rs16944 in IL1B gene is a risk factor for early-onset sepsis susceptibility and outcome in preterm infants. Inflamm Res. 2020;69:155–7.

    Article  CAS  PubMed  Google Scholar 

  51. Khaled BM, Noha ASM, Manal AAM, Engy SM. Role of toll-like receptors 2 and 4 genes polymorphisms in neonatal sepsis in a developing country: a pilot study. J Pediatr Infect Dis. 2020;15:276–82.

    Article  Google Scholar 

  52. Wang XL, Zhang L, Li YW, Hou HM, Sun HB. Association between toll-like receptors 2 and 5 polymorphisms and neonatal sepsis. Zhongguo Dang Dai Er Ke Za Zhi. 2015;17:1316–21 (in Chinese).

    CAS  PubMed  Google Scholar 

  53. Zheng W, Wang J, Si X, Chen M. Interleukin-1 beta +3594 C/T gene polymorphism and susceptibility to sepsis: a meta-analysis. Crit Rev Eukaryot Gene Expr. 2018;28:311–9.

    Article  PubMed  Google Scholar 

  54. Montoya-Ruiz C, Jaimes FA, Rugeles MT, López JÁ, Bedoya G, Velilla PA. Variants in LTA, TNF, IL1B and IL10 genes associated with the clinical course of sepsis. Immunol Res. 2016;64:1168–78.

    Article  CAS  PubMed  Google Scholar 

  55. Wen AQ, Gu W, Wang J, Feng K, Qin L, Ying C, et al. Clinical relevance of IL-1beta promoter polymorphisms (-1470, -511, and -31) in patients with major trauma. Shock. 2010;33:576–82.

    Article  CAS  PubMed  Google Scholar 

  56. Wan QQ, Ye QF, Ma Y, Zhou JD. Genetic association of interleukin-1β (-511C/T) and its receptor antagonist (86-bpVNTR) gene polymorphism with susceptibility to bacteremia in kidney transplant recipients. Transplant Proc. 2012;44:3026–8.

    Article  CAS  PubMed  Google Scholar 

  57. Jiménez-Sousa MÁ, Medrano LM, Liu P, Almansa R, Fernández-Rodríguez A, Gómez-Sánchez E, et al. IL-1B rs16944 polymorphism is related to septic shock and death. Eur J Clin Investig. 2017;47:53–62.

    Article  CAS  Google Scholar 

  58. Ferdosian F, Jarahzadeh MH, Bahrami R, Nafei Z, Jafari M, Raee-Ezzabadi A, et al. Association of IL-6 -174G > C polymorphism with susceptibility to childhood sepsis: a systematic review and meta-analysis. Fetal Pediatr Pathol. 2021;40:638–52.

    Article  PubMed  Google Scholar 

  59. Wang H, Guo S, Wan C, Yang T, Zeng N, Wu Y, et al. Tumor necrosis factor-α -308 G/A polymorphism and risk of sepsis, septic shock, and mortality: an updated meta-analysis. Oncotarget. 2017;8:94910–9.

    Article  PubMed  PubMed Central  Google Scholar 

  60. LeVan TD, Bloom JW, Bailey TJ, Karp CL, Halonen M, Martinez FD, et al. A common single nucleotide polymorphism in the CD14 promoter decreases the affinity of Sp protein binding and enhances transcriptional activity. J Immunol. 2001;167:5838–44.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang AQ, Yue CL, Gu W, Du J, Wang HY, Jiang J. Association between CD14 promoter -159C/T polymorphism and the risk of sepsis and mortality: a systematic review and meta-analysis. PLoS One. 2013;8:e71237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu Q, Xu X, Ren J, Liu S, Liao X, Wu X, et al. Association between the -159C/T polymorphism in the promoter region of the CD14 gene and sepsis: a meta-analysis. BMC Anesthesiol. 2017;17:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Weighardt H, Holzmann B. Role of Toll-like receptor responses for sepsis pathogenesis. Immunobiology. 2007;212:715–22.

    Article  CAS  PubMed  Google Scholar 

  64. Ferwerda B, McCall MB, Alonso S, Giamarellos-Bourboulis EJ, Mouktaroudi M, Izagirre N, et al. TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci U S A. 2007;104:16645–50.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schröder NW, Hermann C, Hamann L, Göbel UB, Hartung T, Schumann RR. High frequency of polymorphism Arg753Gln of the Toll-like receptor-2 gene detected by a novel allele-specific PCR. J Mol Med (Berl). 2003;81:368–72.

    Article  CAS  Google Scholar 

  66. Zhang J, Yang J, Xu X, Liang L, Sun H, Liu G, et al. The influence of genetic polymorphisms in TLR4 and TIRAP, and their expression levels in peripheral blood, on susceptibility to sepsis. Exp Ther Med. 2016;11:131–9.

    Article  CAS  PubMed  Google Scholar 

  67. Bronkhorst MW, Boyé ND, Lomax MA, Vossen RH, Bakker J, Patka P, et al. Single-nucleotide polymorphisms in the Toll-like receptor pathway increase susceptibility to infections in severely injured trauma patients. J Trauma Acute Care Surg. 2013;74:862–70.

    Article  CAS  PubMed  Google Scholar 

  68. Nachtigall I, Tamarkin A, Tafelski S, Weimann A, Rothbart A, Heim S, et al. Polymorphisms of the toll-like receptor 2 and 4 genes are associated with faster progression and a more severe course of sepsis in critically ill patients. J Int Med Res. 2014;42:93–110.

    Article  CAS  PubMed  Google Scholar 

  69. Levy O. Antibiotic proteins of polymorphonuclear leukocytes. Eur J Haematol. 1996;56:263–77.

    Article  CAS  PubMed  Google Scholar 

  70. Michalek J, Svetlikova P, Fedora M, Klimovic M, Klapacova L, Bartosova D, et al. Bactericidal permeability increasing protein gene variants in children with sepsis. Intensive Care Med. 2007;33:2158–64.

    Article  CAS  PubMed  Google Scholar 

  71. Hubacek JA, Stüber F, Fröhlich D, Book M, Wetegrove S, Ritter M, et al. Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: gender-specific genetic predisposition to sepsis. Crit Care Med. 2001;29:557–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education, Science and Technological Development of Republic of Serbia (No. 451-03-9/2021-14/200129).

Author information

Authors and Affiliations

Authors

Contributions

SJT contributed to conceptualization, data curation, formal analysis, investigation, methodology, project administration, writing of the original draft, reviewing and editing. MJ contributed to data curation, investigation, supervision, validation, writing of the original draft, reviewing and editing. JJ contributed to formal analysis, investigation, methodology, validation, visualization, and writing of the original draft. NN contributed to formal analysis, investigation, methodology, visualization, and writing of the original draft. MJ contributed to investigation, supervision, validation, writing of the original draft, reviewing and editing. LMT contributed to investigation, supervision, validation, writing of the original draft, reviewing and editing. All the authors approved the final version of the manuscript.

Corresponding author

Correspondence to Tamara Sljivancanin Jakovljevic.

Ethics declarations

Ethical approval

Not applicable.

Conflict of interest

No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article. The authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sljivancanin Jakovljevic, T., Martic, J., Jacimovic, J. et al. Association between innate immunity gene polymorphisms and neonatal sepsis development: a systematic review and meta-analysis. World J Pediatr 18, 654–670 (2022). https://doi.org/10.1007/s12519-022-00569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-022-00569-7

Keywords

Navigation