Skip to main content
Log in

Acute infectious osteomyelitis in children: new treatment strategies for an old enemy

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Acute osteomyelitis still represents a significant clinical challenge, with an increasing incidence in paediatric population. A careful assessment and a rapid diagnosis with proper timing and choice of empirical antimicrobial therapy are necessary to avoid sequelae. The initial treatment should consist of empirical antibiotic therapy, to cover the major responsible pathogens in each age group.

Data sources

We made a literature search with PubMed and Cochrane database from 2000 to 2019 in English, French, and Spanish languages using the key words “osteomyelitis, children, clinical, diagnosis, and treatment”.

Results

The child’s clinical features, age, and the microbiological profile of the geographic area should be evaluated for diagnosis and in the choice of antibiotic treatment. Latest data suggest the administration of intravenous antibiotics for a short period, with subsequent oral therapy, according to the improvement of clinical status and inflammatory markers. For children older than 3 months, the shift to oral medications is already possible after a short course of intravenous therapy, until recovery. The timing for the shift from cefazolin to cephalexin or cefuroxime, intravenous clindamycin to oral clindamycin, and intravenous ceftriaxone + oxacillin to oral equivalents will be decided according to the improvement of clinical status and inflammatory markers. We also present the approach to osteomyelitis due to difficult pathogens, such as Methicillin-resistant Staphylococcus aureus (MRSA) and Panton-Valentine leukocidin (PVL)-positive S. aureus infections.

Conclusion

In this review, we present the current approach to the clinical diagnosis and management of osteomyelitis in childhood, with an update on recent recommendations, as a useful instrument to understand the rationale of antibiotic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whyte NSB, Bielski RJ. Acute hematogenous osteomyelitis in children. Pediatr Ann. 2016;45:e204–8.

    PubMed  Google Scholar 

  2. Davis WT, Gilbert SR. Comparison of methicillin-resistant versus susceptible staphylococcus aureus pediatric osteomyelitis. J Pediatr Orthop. 2018;38:e285–91.

    PubMed  Google Scholar 

  3. Hamdy RF, Dona D, Jacobs MB, Gerber JS. Risk factors for complications in children with Staphylococcus aureus bacteremia. J Pediatr. 2019;208:214–220.e2.

    PubMed  Google Scholar 

  4. Arnold JC, Bradley JS. Osteoarticular infections in children. Infect Dis Clin North Am. 2015;29:557–74.

    PubMed  Google Scholar 

  5. Yeo A, Ramachandran M. Acute haematogenous osteomyelitis in children. BMJ. 2014;348:g66.

    PubMed  Google Scholar 

  6. Paakkonen M, Peltola H. Acute osteomyelitis in children. N Engl J Med. 2014;370:1365–6.

    CAS  PubMed  Google Scholar 

  7. Howard-Jones AR, Isaacs D. Systematic review of duration and choice of systemic antibiotic therapy for acute haematogenous bacterial osteomyelitis in children. J Paediatr Child Health. 2013;49:760–8.

    PubMed  Google Scholar 

  8. Dartnell J, Ramachandran M, Katchburian M. Haematogenous acute and subacute paediatric osteomyelitis. J Bone Jt Surg Br. 2012;94B:584–95.

    Google Scholar 

  9. Boccuzzi E, Buonsenso D, Ferro V, Raucci U, Reale A, Piga S, et al. The osteoarticular infection in a pediatric emergencysetting: a challenging diagnosis. Pediatr Emerg Care. 2020;36:e108–14.

    PubMed  Google Scholar 

  10. Batchelder N, So TY. Transitioning antimicrobials from intravenous to oral in pediatric acute uncomplicated osteomyelitis. World J Clin Pediatr. 2016;5:244–50.

    PubMed  PubMed Central  Google Scholar 

  11. Thomsen I, Creech CB. Advances in the diagnosis and management of pediatric osteomyelitis. Curr Infect Dis Rep. 2011;13:451–60.

    PubMed  Google Scholar 

  12. Ju KL, Zurakowski D, Kocher MS. Differentiating between methicillin-resistant and methicillin-sensitive Staphylococcus aureus osteomyelitis in children: an evidence-based clinical prediction algorithm. J Bone Jt Surg Am. 2011;93:1693–701.

    Google Scholar 

  13. Paakkonen M, Kallio MJT, Kallio PE, Peltola H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin Orthop Relat Res. 2010;468:861–6.

    PubMed  Google Scholar 

  14. Jaramillo D, Dormans JP, Delgado J, Laor T, St Geme JW. Hematogenous osteomyelitis in Infants and children: imaging of a changing disease. Radiology. 2017;283:629–43.

    PubMed  Google Scholar 

  15. Schweitzer A, Della Beffa C, Akmatov MK, Narchi H, Abaev YK, Sherry DD, et al. Primary osteomyelitis of the sternum in the pediatric age group: report of a new case and comprehensive analysis of seventy-four cases. Pediatr Infect Dis J. 2015;34:e92–101.

    PubMed  Google Scholar 

  16. Mellado Santos JM. Diagnostic imaging of pediatric hematogenous osteomyelitis: lessons learned from a multi-modality approach. Eur Radiol. 2006;16:2109–19.

    PubMed  Google Scholar 

  17. Colston J, Atkins B. Bone and joint infection. Clin Med J R Coll Physicians Lond. 2018;18:150–4.

    Google Scholar 

  18. Arnold JC, Cannavino CR, Ross MK, Westley B, Miller TC, Riffenburgh RH, et al. Acute bacterial osteoarticular infections: eight-year analysis of C-reactive protein for oral step-down therapy. Pediatrics. 2012;130:e821–8.

    PubMed  Google Scholar 

  19. Montgomery NI, Rosenfeld S. Pediatric osteoarticular infection update. J Pediatr Orthop. 2015;35:74–81.

    PubMed  Google Scholar 

  20. Hoppe P-A, Holzhauer S, Lala B, Bührer C, Gratopp A, Hanitsch LG, et al. Severe infections of Panton-Valentine leukocidin positive Staphylococcus aureus in children. Med (Baltim). 2019;98:e17185.

    Google Scholar 

  21. Hardy C, Osei L, Basset T, Elenga N. Bone and joint infections with Staphylococcus aureus strains producing Panton–Valentine leukocidin in French Guiana. Med (Baltim). 2019;98:e16015.

    Google Scholar 

  22. Sankar R. Bone and joint infections in children. Indian J Pract Pediatr. 2015;17:301–7.

    Google Scholar 

  23. Yagupsky P, Porsch E, 3rd St Geme JW. Kingella kingae: an emerging pathogen in young children. Pediatrics. 2011;127:557–65.

    PubMed  Google Scholar 

  24. Saphyakhajon P. Empiric antibiotic therapy for acute osteoarticular infections with suspected methicillin-resistant staphylococcus aureus or kingella. Pediatr Infect Dis J. 2008;27:765–7.

    PubMed  Google Scholar 

  25. Chambers JB, Forsythe DA, Bertrand SL, Iwinski HJ, Steflik DE. Retrospective review of osteoarticular infections in a pediatric sickle cell age group. J Pediatr Orthop. 2000;20:682–5.

    CAS  PubMed  Google Scholar 

  26. Miller LJ, Meier Riehm E. Sickle cell disease in children. Drugs. 2012;72:895–906.

    PubMed  PubMed Central  Google Scholar 

  27. Piehl FC, Davis RJ, Prugh SI. Osteomyelitis in sickle cell disease. J Pediatr Orthop. 1993;13:225–7.

    CAS  PubMed  Google Scholar 

  28. Song KM, Sloboda JF. Acute hematogenous osteomyelitis in children. J Am Acad Orthop Surg. 2001;9:166–75.

    CAS  PubMed  Google Scholar 

  29. Donà D, Fovino LN, Mozzo E, Cabrelle G, Bordin G, Lundin R, et al. Case report osteomyelitis in cat-scratch disease : a never-ending dilemma — a case report and literature review. Case Rep Pediatr. 2018;8:1679306.

    Google Scholar 

  30. Peltola H, Paakkonen M, Kallio P, Kallio MJT, TO-SASG. Short-versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood. Pediatr Infect Dis J. 2010;29:1123–8.

    PubMed  Google Scholar 

  31. Peltola H, Paakkonen M, Kallio P, Kallio MJT, The OM-SA Study Group. Clindamycin vs. first-generation cephalosporins for acute osteoarticular infections of childhood-a prospective quasi-randomized controlled trial. Clin Microbiol Infect. 2012;18:582–9.

    CAS  PubMed  Google Scholar 

  32. Tetzlaff TR, Howard JB, McCraken GH, Calderon E, Larrondo J. Antibiotic concentrations in pus and bone of children with osteomyelitis. J Pediatr. 1978;92:135–40.

    CAS  PubMed  Google Scholar 

  33. Jagodzinski NA, Kanwar R, Graham K, Ed F, Bache CE, Tr F. Prospective evaluation of a shortened regimen of treatment for acute osteomyelitis and septic arthritis in children. J Pediatr Orthop. 2009;29:518–25.

    PubMed  Google Scholar 

  34. Tetzlaff TR, McCracken GHJ, Nelson JD. Oral antibiotic therapy for skeletal infections of children. II. Therapy of osteomyelitis and suppurative arthritis. J Pediatr. 1978;92:485–90.

    CAS  PubMed  Google Scholar 

  35. Landersdorfer CB, Bulitta JB, Kinzig M, Holzgrabe U, Sorgel F. Penetration of antibacterials into bone: pharmacokinetic, pharmacodynamic and bioanalytical considerations. Clin Pharmacokinet. 2009;48:89–124.

    CAS  PubMed  Google Scholar 

  36. Afghani B, Kong V, Wu FL. What would pediatric infectious disease consultants recommend for management of culture-negative acute osteomyelitis? J Pediatr Orthop. 2007;27:805–9.

    PubMed  Google Scholar 

  37. Fass RJ. Treatment of osteomyelitis and septic arthritis with cefazolin. Antimicrob Agents Chemother. 1978;13:405–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wieland BW, Marcantoni JR, Bommarito KM, Warren DK, Marschall J. A retrospective comparison of ceftriaxone versus oxacillin for osteoarticular infections Due to Methicillin–Susceptible Staphylococcus aureus. Clin Infect Dis. 2012;54:585–90.

    CAS  PubMed  Google Scholar 

  39. Nguyen HM, Jones RN. Susceptible staphylococcus prosthetic joint infections: using the oxacillin minimum inhibitory concentration to guide appropriate. Clin Infect Dis. 2013;57:161–2.

    PubMed  Google Scholar 

  40. Osmon DR, Berbari EF, Berendt AR, Lew D, Zimmerli W, Steckelberg JM, et al. Diagnosis and management of prosthetic joint infection : clinical practice guidelines by the infectious diseases society of America. Clin Infect Dis. 2013;56:e1–25.

    PubMed  Google Scholar 

  41. Ambrose PG. Ceftriaxone: reappraisal of Federal Drug Administration in vitro susceptibility testing interpretive criteria: Institute for Clinical Pharmacodynamics 2011. http://www.clsi.org/wp-content/uploads/2011/12/6_MicroAST_PK_PDCeftriaxone_Jan2011.pdf.

  42. Sader HS, Johnson DM, Jones RN. In Vitro activities of the novel cephalosporin LB 11058 against multidrug-resistant Staphylococci and Streptococci. Antimicrob Agents Chemother. 2004;48:53–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tice AD, Hoaglund PA, Shoultz DA. Outcomes of osteomyelitis among patients treated with outpatient parenteral antimicrobial therapy. Am J Med. 2003;114:723–8.

    CAS  PubMed  Google Scholar 

  44. Guglielmo BJ, Luber AD, Paletta DJ, Jacobs RA. Ceftriaxone therapy for staphylococcal osteomyelitis: a review. Clin Infect Dis. 2000;30:205–7.

    CAS  PubMed  Google Scholar 

  45. Feigin RD, Pickering LK, Anderson D, Keeney RE, Shackleford PG. Clindamycin treatment of osteomyelitis and septic arthritis in children. Pediatr. 1975;55:213–23.

    CAS  Google Scholar 

  46. Saavedra-Lozano J, Mejias A, Ahmad N, Peromingo E, Ardura MI, et al. Changing trends in acute osteomyelitis in children: impact of methicillin-resistant Staphylococcus aureus infections. J Pediatr Orthop. 2008;28:569–75.

    PubMed  Google Scholar 

  47. Chang F-Y, Peacock JEJ, Musher DM, Triplett P, MacDonald BB, Mylotte JM, et al. Staphylococcus aureus bacteremia: recurrence and the impact of antibiotic treatment in a prospective multicenter study. Med (Baltim). 2003;82:333–9.

    CAS  Google Scholar 

  48. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.

    PubMed  Google Scholar 

  49. Matthews PC, Taylor A, Byren I, Atkins BL. Teicoplanin levels in bone and joint infections: are standard doses subtherapeutic? J Infect. 2007;55:408–13.

    PubMed  Google Scholar 

  50. Pacifici GM. Clinical pharmacology of teicoplanin in neonates: effects and pharmacokinetics. Int J Pediatr. 2016;4:3669–84.

    CAS  Google Scholar 

  51. Dufort G, Ventura C, Olive T, Ortega JJ. Teicoplanin pharmacokinetics in pediatric patients. Pediatr Infect Dis J. 1996;15:494–8.

    CAS  PubMed  Google Scholar 

  52. Garazzino S, Aprato A, Baietto L, D'Avolio A, Maiello A, De Rosa FG, et al. Glycopeptide bone penetration in patients with septic pseudoarthrosis of the Tibia. Clin Pharmacokinet. 2008;47:793–805.

    CAS  PubMed  Google Scholar 

  53. Chiappini E, Serrano E, Galli L, Villani A, Krzysztofiak A. Practical issues in early switching from intravenous to oral antibiotic therapy in children with uncomplicated acute hematogenous osteomyelitis: results from an italian survey. Int J Environ Res Public Health. 2019. https://doi.org/10.3390/ijerph16193557.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brehin C, Claudet I, Dubois D, Sales de Gauzy J, Vial J, Chaix Y, et al. Assessing the management of pediatric bone and joint infections according to French guidelines. Med Mal Infect. 2019. https://doi.org/10.1016/j.medmal.2019.07.016.

    Article  PubMed  Google Scholar 

  55. Thakolkaran N, Shetty AK. Acute hematogenous osteomyelitis in children. Ochsner J. 2019;19:116–22.

    PubMed  PubMed Central  Google Scholar 

  56. Schuppen J, van Doorn M, Rijn R. Childhood osteomyelitis: imaging characteristics. Insights. Imaging. 2012;3:519–33.

    Google Scholar 

  57. Batchelder N, So T-Y. Transitioning antimicrobials from intravenous to oral in pediatric acute uncomplicated osteomyelitis. World J Clin Pediatr. 2016;5:244–50.

    PubMed  PubMed Central  Google Scholar 

  58. Chen C-J, Chiu C-H, Lin T-Y, Lee Z-L, Yang W-E, Huang Y-C. Experience with linezolid therapy in children with osteoarticular infections. Pediatr Infect Dis J. 2007;26:985–8.

    PubMed  Google Scholar 

  59. Chiappini E, Conti C, Galli L, de Martino M. Clinical efficacy and tolerability of linezolid in pediatric patients: a systematic review. Clin Ther. 2010;32:66–88.

    CAS  PubMed  Google Scholar 

  60. Adra M, Lawrence KR. Trimethoprim/sulfamethoxazole for treatment of severe Staphylococcus aureus infections. Ann Pharmacother. 2004;38:338–41.

    CAS  PubMed  Google Scholar 

  61. Kim BN, Kim ES, Oh MD. Oral antibiotic treatment of Staphylococcal bone and joint infections in adults. J Antimicrob Chemother. 2014;69:309–22.

    CAS  PubMed  Google Scholar 

  62. Yeldandi V, Strodtman R, Lentino JR. In-vitro and in-vivo studies of trimethoprim–sulphamethoxazole against multiple resistant Staphylococcus aureus. J Antimicrob Chemother. 1988;22:873–80.

    CAS  PubMed  Google Scholar 

  63. Saux MC, Le Rebeller A, Leng B, Mintrosse J. Bone diffusion of trimethoprim and sulfamethoxazole high pressure liquid chromatography (HPLC) (author’s transl). Pathol Biol (Paris). 1982;30:385–8.

    CAS  PubMed  Google Scholar 

  64. Stein A, Bataille JF, Drancourt M, Curvale G, Argenson JN, Groulier P, et al. Ambulatory treatment of multidrug-resistant Staphylococcus-infected orthopedic implants with high-dose oral co-trimoxazole (trimethoprim-sulfamethoxazole). Antimicrob Agents Chemother. 1998;42:3086–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Eliakim-Raz N, Hellerman M, Yahav D, Cohen J, Margalit I, Fisher S, et al. Trimethoprim/sulfamethoxazole versus vancomycin in the treatment of healthcare/ventilator-associated MRSA pneumonia: a case-control study. J Antimicrob Chemother. 2017;72:2687.

    PubMed  Google Scholar 

  66. Pfaller MA, Flamm RK, Castanheira M, Sader HS, Mendes RE. Dalbavancin in-vitro activity obtained against gram-positive clinical isolates causing bone and joint infections in US and European hospitals (2011–2016). Int J Antimicrob Agents. 2018;51:608–11.

    CAS  PubMed  Google Scholar 

  67. Boucher HW, Wilcox M, Talbot GH, Puttagunta S, Das AF, Dunne MW. Once-weekly dalbavancin versus daily conventional therapy for skin infection. N Engl J Med. 2014;370:2169–79.

    PubMed  Google Scholar 

  68. Huband MD, Castanheira M, Farrell DJ, Flamm RK, Jones RN, Sader HS, et al. In vitro activity of dalbavancin against multidrug-resistant Staphylococcus aureus and streptococci from patients with documented infections in Europe and surrounding regions (2011–2013). Int J Antimicrob Agents. 2016;47:495–9.

    CAS  PubMed  Google Scholar 

  69. Kiang TKL, Wilby KJ, Ensom MHH. A critical review on the clinical pharmacokinetics, pharmacodynamics, and clinical trials of ceftaroline. Clin Pharmacokinet. 2015;54:915–31.

    CAS  PubMed  Google Scholar 

  70. Jacqueline C, Amador G, Caillon J, Le Mabecque V, Batard E, Miègeville AF, et al. Efficacy of the new cephalosporin ceftaroline in the treatment of experimental methicillin-resistant Staphylococcus aureus acute osteomyelitis. J Antimicrob Chemother. 2010;65:1749–52.

    CAS  PubMed  Google Scholar 

  71. Casapao AM, Davis SL, Barr VO, et al. Large retrospective evaluation of the effectiveness and safety of ceftaroline fosamil therapy. Antimicrob Agents Chemother. 2014;58:2541–6.

    PubMed  PubMed Central  Google Scholar 

  72. Zimmerli W, Widmer AF, Blatter M, Frei R, Ochsner PE. Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. Foreign-Body Infection (FBI) Study Group. JAMA. 1998;279:1537–41.

    CAS  PubMed  Google Scholar 

  73. Norden CW, Shaffer M. Treatment of experimental chronic osteomyelitis due to Staphylococcus aureus with vancomycin and rifampin. J Infect Dis. 1983;147:352–7.

    CAS  PubMed  Google Scholar 

  74. Diep BA, Afasizheva A, Le HN, Kajikawa O, Matute-Bello G, Tkaczyk C, et al. Effects of linezolid on suppressing in vivo production of staphylococcal toxins and improving survival outcomes in a rabbit model of methicillin-resistant Staphylococcus aureus necrotizing pneumonia. J Infect Dis. 2013;208:75–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Rojo P, Barrios M, Palacios A, Gomez C, Chaves F. Community-associated Staphylococcus aureus infections in children. Expert Rev Anti Infect Ther. 2010;8:541–54.

    CAS  PubMed  Google Scholar 

Download references

Funding

This article is not funded by any sources.

Author information

Authors and Affiliations

Authors

Contributions

CS, MC, GC, DDL, and DD have made substantial contributions to the conception, design, collection, and interpretation of data for this review, drafted the manuscript, revised it critically for content, and approved the final version.

Corresponding author

Correspondence to Chiara Minotti.

Ethics declarations

Ethical approval

Ethical approval was not needed, since this article was a review article.

Conflict of interest

The authors do not have any conflict of interest. No financial or non-financial benefits have been received or will be received from any party related directly or indirectly to the subject of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Congedi, S., Minotti, C., Giaquinto, C. et al. Acute infectious osteomyelitis in children: new treatment strategies for an old enemy. World J Pediatr 16, 446–455 (2020). https://doi.org/10.1007/s12519-020-00359-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-020-00359-z

Keywords

Navigation