Skip to main content

Advertisement

Log in

Pegylated interferon α/ribavirin therapy enhances bone mineral density in children with chronic genotype 4 HCV infection

  • Original Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

The impact of chronic hepatitis C (CHC) on bone mineral density (BMD) has been well studied in adults with a relative paucity of data in children, especially concerning effect of treatment with pegylated interferon (PEG-IFN) plus ribavirin (RV). In the current work, we assessed prospectively changes in BMD in children with CHC before, during, and after treatment.

Methods

Forty-six consecutive children with noncirrhotic genotype 4 CHC were subjected to dual-energy X-ray absorptiometry at baseline, 24 weeks, 48 weeks of therapy and 24 weeks after treatment. BMD, bone mineral content (BMC), and Z score of lumbar spine (L2-L4) were reported. Tanner pubertal stage, viral load, liver function tests, serum calcium, phosphorus, alkaline phosphatase, parathyroid hormone, and liver histopathology were assessed in all included children.

Results

Thirty (65.2%) patients had normal BMD, 10 (21.7%) were at risk for low BMD, and 6 (13.1%) had low BMD for chronological age. Patients with low BMD were significantly older (P=0.001), with higher frequency of delayed puberty than other groups (P=0.002). Baseline densitometric parameters (BMD & BMC) were significantly positively correlated with patients’ age, weight, height, body mass index and hemoglobin level; while they were insignificantly correlated with basal viral load, histopathology activity index and fibrosis score. Densitometric parameters improved significantly on PEG-IFN plus RV treatment, this improvement was found to be sustainable 24 weeks after therapy.

Conclusions

Low BMD is detectable in a proportion of CHC children. Antiviral therapy leads to a sustainable increase in BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavanchy D. The global burden of hepatitis C. Liver Int 2009;29:74–81.

    Article  PubMed  Google Scholar 

  2. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 2005;5:558–567.

    Article  PubMed  Google Scholar 

  3. Kamal SM, Nasser IA. Hepatitis C genotype 4: what we know and what we don’t yet know. Hepatology 2008;47:1371–1383.

    Article  CAS  PubMed  Google Scholar 

  4. Guerra J, Garenne M, Mohamed M, Fontanet A. HCV burden of infection in Egypt: results from a nationwide survey. J Viral Hepat 2012;19:560–567.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenthal P. Chronic hepatitis C viral infection in childhood: to treat or not to treat with interferon-that is the question. J Pediatr Gastroenterol Nutr 1997;23:363–364.

    Article  Google Scholar 

  6. Khalifa AS, Mitchell BS, Watts DM, el-Samahy MH, el-Sayed MH, Hassan NF, et al. Prevalence of hepatitis C viral antibody in transfused and nontransfused Egyptian children. Am J Trop Med Hyg 1993;49:316–321.

    Article  CAS  PubMed  Google Scholar 

  7. El-Raziky MS, El-Hawary M, Esmat G, Abouzied AM, El-Koofy N, Mohsen N, et al. Prevalence and risk factors of asymptomatic hepatitis C virus infection in Egyptian children. World J Gastroenterol 2007;13:1828–1832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bortolotti F, Verucchi G, Camma C, Cabibbo G, Zancan L, IndolfiG, et al. Long-term course of chronic hepatitis C in children: from viral clearance to end-stage liver disease. Gastroenterology 2008;134:1900–1907.

    Article  PubMed  Google Scholar 

  9. Rodrigue JR, Balistreri W, Haber B, Jonas MM, Mohan P, Molleston JP, et al. Peginterferon with or without ribavirin has minimal effect on quality of life, behavioral/emotional, and cognitive outcomes in children. Hepatology 2011;53:1468–1475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pockros PJ. Advances in newly developing therapy for chronic hepatitis C virus infection. Front Med 2014;8:166–174.

    Article  PubMed  Google Scholar 

  11. An open-label study of the effect of telaprevir in combination with peginterferon alfa-2b and ribavirin in pediatric subjects infected with hepatitis C virus (NCT01701063). https://www. clinicaltrials.gov/ct2/show/NCT01701063 (accessed January 15, 2015).

  12. Pharmacokinetics of boceprevir in pediatric subjects with chronic hepatitis C genotype 1 (P07614) (NCT01425190). https://www.clinicaltrials.gov/ct2/show/ NCT0142510 (accessed January 15, 2015).

  13. Rouillard S, Lane NE. Hepatic osteodystrophy. Hepatology 2001;33:301–307.

    Article  CAS  PubMed  Google Scholar 

  14. Hay JE. Osteoporosis in liver diseases and after liver transplantation. J Hepatol 2003;38:856–865.

    Article  PubMed  Google Scholar 

  15. Leslie WD, Bernstein CN, Leboff MS. AGA technical review on osteoporosis in hepatic disorders. Gastroenterology 2003;125:941–966.

    Article  PubMed  Google Scholar 

  16. Collier J. Bone disorders in chronic liver disease. Hepatology 2007;46:1271–1278.

    Article  CAS  PubMed  Google Scholar 

  17. Floreani A, Mega A, Camozzi V, Baldo V, Plebani M, Burra P, et al. Is osteoprosis a peculiar association with primary biliary cirrhosis? World J Gastroenterol 2005;11:5347–5350.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Duarte M, Farias M, Coelho H, Mendonça LM, Stabnov LM, do Carmo Oliveira M, et al. Calcium-parathyroid hormonevitamin D axis and metabolic bone disease in chronic viral liver disease. J Gastroenterol Hepato 2001;16:1022–1027.

    Article  CAS  Google Scholar 

  19. Solís-Herruzo JA, Castellano G, Fernández I, Muñoz R, Hawkins F. Decreased bone mineral density after therapy with alpha interferon in combination with ribavirin for chronic hepatitis C. J Hepatol 2000;33:812–817.

    Article  PubMed  Google Scholar 

  20. Bunchorntavakul C, Chotiyaputta W, Sriussadaporn S, Tanwandee T. Bone mineral density in Thai patients with chronic hepatitis C, before and after treatment with pegylated interferon/ ribavirin combination. Thia J Gastroentrol 2007;8:73–77.

    Google Scholar 

  21. Mora S, Giacomet V, Viganò A, Maruca K, Capelli S, Nannini P, et al. Areal bone mineral density in pediatric patients with chronic hepatitis B or chronic hepatitis C. Calcif Tissue Int 2014;95:218–221.

    Article  CAS  PubMed  Google Scholar 

  22. Mahdy KA, Ahmed HH, Mannaa F, Abdel-Shaheed A. Clinical benefits of biochemical markers of bone turnover in Egyptian children with chronic liver diseases. World J Gastroenterol 2007;13:785–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Maccabruni A, Zaramella M, Pedrotti L, Lucanto S, Quaglini S, Mora R. Bone disorders in children and adolescents with chronic HCV infection. Clin Cases Miner Bone Metab 2014;11:99–104.

    PubMed  PubMed Central  Google Scholar 

  24. Urganci N, Gulec SG, Arapoglu M, Vural S, Nuhoğ A. The effect of ribavirin on bone density in patients with chronic hepatitis C treated with interferon-ribavirin therapy. J Pediatr Gastroenterol Nutr 2005;41:650–652.

    Article  CAS  PubMed  Google Scholar 

  25. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol 1995;22:696–699.

    Article  CAS  PubMed  Google Scholar 

  26. Lee PA. Disorder of puberty. In: Lifshitz F, ed. Pediatric endocrinology, 3rd ed. New York: Marcel Dekker Inc, 1996: 179–195.

    Google Scholar 

  27. Argente J. Diagnosis of late puberty. Horm Res 1999;51:95–100.

    CAS  PubMed  Google Scholar 

  28. Ghany MG, Strader DB, Thomas DL, Seeff LB. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 2009;49:1335–1374.

    Article  CAS  PubMed  Google Scholar 

  29. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom 2008;11:43–58.

    Article  PubMed  Google Scholar 

  30. Bishop N, Braillon P, Burnham J, Cimaz R, Davies J, Fewtrell M, et al. Dual-energy X-ray aborptiometry assessment in children and adolescents with diseases that may affect the skeleton: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 2008;11:29–42.

    Article  PubMed  Google Scholar 

  31. El-Ziny MA, Al-Tonbary YA, Salama OS, Bakr AA, Al-Marsafawy H, Elsharkawy AA. Low turnover bone disease in Egyptian children with acute leukemia. Hematology 2005;10:327–333.

    Article  PubMed  Google Scholar 

  32. Bianchi ML, Baim S, Bishop NJ, Gordon CM, Hans DB, Langman CB, et al. Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr Nephrol 2010;25:37–47.

    Article  PubMed  Google Scholar 

  33. Hartman C, Hochberg Z, Shamir R. Osteoporosis in pediatrics. Isr Med Assoc J 2003;5:509–515.

    PubMed  Google Scholar 

  34. Thomas-Teinturier C, Salenave S. Endocrine sequelae after treatment of pediatric cancer: from childhood to adulthood. Bull Cancer 2015;102:612–621.

    Article  PubMed  Google Scholar 

  35. Umławska W, Krzyzanowska M. Puberty in certain chronic illness. Pediatr Endocrinol Diabetes Metab 2009;15:216–218. [In Polish]

    PubMed  Google Scholar 

  36. Alves CH, Kuperman H, Dichtchekenian V, Damiani D, Della Manna T, Cristófani LM, et al. Growth and puberty after treatment for acute lymphoblastic leukemia. Rev Hosp Clin Fac Med Sao Paulo 2004;59:67–70.

    Article  PubMed  Google Scholar 

  37. Kang MJ, Lim SJ. Bone mineral density deficits in childhood cancer survivors: pathophysiology, prevalence, screening, and management. Korean J Pediatr 2013;56:60–67.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Halton JM, Atkinson SA, Fraher L, Webber CE, Cockshott WP, Tam C, et al. Mineral homeostasis and bone mass at diagnosis in children with acute lymphoblastic leukemia. J Pediatr 1995;126:557–564.

    Article  CAS  PubMed  Google Scholar 

  39. Arikoski P, Komulainen J, Riikonen P, Voutilainen R, Knip M, Kroger H. Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab 1999;84:3174–3181.

    Article  CAS  PubMed  Google Scholar 

  40. Pfeilschifter J, Diel IJ. Osteoporosis due to cancer treatment: pathogenesis and management. J Clin Oncol 2000;18:1570–1593.

    Article  CAS  PubMed  Google Scholar 

  41. Wheeler DL, Van der Griend RA, Wronski TJ, Miller GJ, Keith EE, Graves JE. The short-and long-term effects of methotrexate on the rat skeleton. Bone 1995;16:215–221.

    Article  CAS  PubMed  Google Scholar 

  42. Holzer G, Krepler P, Koschat MA, Grampp S, Dominkus M, Kotz R. Bone mineral density in long-term survivors of highly malignant osteosarcoma. J Bone Joint Surg Br 2003;85:231–237.

    Article  CAS  PubMed  Google Scholar 

  43. Mandel K, Atkinson S, Barr RD, Pencharz P. Skeletal morbidity in childhood acute lymphoblastic leukemia. J Clin Oncol 2004;22:1215–1221.

    Article  PubMed  Google Scholar 

  44. Corazza GR, Trevisani F, Di Stefano M, De Notariis S, Veneto G, Cecchetti L, et al. Early increase of bone resorption in patients with liver cirrhosis secondary to viral hepatitis. Dig Dis Sci 2000;45:1392–1399.

    Article  CAS  PubMed  Google Scholar 

  45. Carey EJ, Balan V, Kremers WK, Hay JE. Osteopenia and osteoporosis in patients with end-stage liver disease caused by hepatitis C and alcoholic liver disease: not just a cholestatic problem. Liver Transpl 2003;9:1166–1173.

    Article  PubMed  Google Scholar 

  46. Schiefke I, Fach A, Wiedmann M, Aretin AV, Schenker E, Borte G, et al. Reduced bone mineral density and altered bone turnover markers in patients with non-cirrhotic chronic hepatitis B or C infection. World J Gastroenterol 2005;11:1843–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hofmann WP, Kronenberger B, Bojunga J, Stamm B, Herrmann E, Bücker A, et al. Prospective study of bone mineral density and metabolism in patients with chronic hepatitis C during pegylated interferon alpha and ribavirin therapy. J Viral Hepat 2008;15:790–796.

    CAS  PubMed  Google Scholar 

  48. Nanda KS, Ryan EJ, Murray BF, Brady JJ, McKenna MJ, Nolan N, et al. Effect of chronic hepatitis C virus infection on bone disease in postmenopausal women. Clin Gastroenterol Hepatol 2009;7:894–899.

    Article  CAS  PubMed  Google Scholar 

  49. Luchi S, Fiorini I, Meini M, Scasso A. Alterations of bone metabolism in patients with chronic C virus hepatitis. Infez Med 2005;13:23–27. [In Italian]

    PubMed  Google Scholar 

  50. Pelazas-González R, González-Reimers E, Alemán-Valls MR, Santolaria-Fernández F, López-Prieto J, González-Díaz A, et al. Bone alterations in hepatitis C virus infected patients. Eur J Intern Med 2013;24:92–96.

    Article  PubMed  Google Scholar 

  51. Goodman GR, Dissanayake IR, Gorodetsky E, Zhou H, Ma YF, Jee WS, et al. Interferon-alpha, unlike interferon-gamma, does not cause bone loss in the rat. Bone 1999;25:459–463.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abeer Fathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megahed, A., Salem, N., Fathy, A. et al. Pegylated interferon α/ribavirin therapy enhances bone mineral density in children with chronic genotype 4 HCV infection. World J Pediatr 13, 346–352 (2017). https://doi.org/10.1007/s12519-017-0013-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-017-0013-x

Key words

Navigation